\mathcal{R}-parameters and \mathcal{R}-chromatic problems

Anne Sinkoa* and Peter J. Slaterab

a Mathematical Sciences Department
b Computer Science Department
University of Alabama in Huntsville
Huntsville, AL 35899 USA

For any graph G, a collection $\mathcal{R} = \{R_1, R_2, \ldots, R_t\}$ of subsets of the vertex set $V(G)$ can be selected. Two such common choices for \mathcal{R} are $\mathcal{R} = E(G)$, the collection of edges, and $\mathcal{R} = \{N(v_1), N(v_2), \ldots, N(v_n)\}$, the collection of open neighborhoods. A number of general \mathcal{R}-parameters will be defined, many of which are instances of well studied parameters (such as domination and independence) as well as instances of previously undocumented parameters.

\mathcal{R}-chromatic problems involve these same \mathcal{R} collections, where the \mathcal{R}-chromatic number $\chi_{\mathcal{R}}(G)$ can be defined to be the minimum number k of sets C_1, C_2, \ldots, C_k that partition $V(G)$ such that, for each R_i, no C_j contains R_i. In particular, we consider the case where \mathcal{R} is the collection of all open neighborhoods and consider $\chi(2)(G)$, where $\chi(2)(G)$ is defined to be the minimum number k of sets C_1, C_2, \ldots, C_k that partition $V(G)$ such that no C_j contains any open neighborhood $N(v)$.

1