Use u-substitution to find the following integrals. Feel free to talk to your neighbors, but try not to use your book or notes.

1. \[\int x(2x + 5)^8 dx \]
 \[u = 2x + 5 \implies x = \frac{u - 5}{2}, \quad du = 2dx \]
 \[\int x(2x + 5)^8 dx = \int \left(\frac{u - 5}{2} \right)^8 \left(\frac{1}{2} du \right) = \frac{1}{4} \int (u^9 - 5u^8) du = \frac{1}{4} \left(\frac{1}{10}u^{10} - \frac{5}{9}u^9 \right) + C \]
 \[= \frac{1}{40}(2x + 5)^{10} - \frac{5}{45}(2x + 5)^9 + C \]

2. \[\int_1^2 \frac{e^{1/x}}{x^2} dx \]
 \[u = \frac{1}{x} \implies du = -\frac{1}{x^2} dx \]
 \[\int_1^2 \frac{e^{1/x}}{x^2} dx = -\int_1^{1/2} e^u du = -[e^u]_{1/2} = (-e^{1/2}) - (-e^1) = e^1 - e^{1/2} \]
 Note that we had to change the limits of integration to be in terms of \(u \) instead of \(x \).

3. \[\int \cot x \, dx \]
 \[\cot x = \frac{\cos x}{\sin x} \]
 \[u = \sin x \implies du = \cos x \, dx \]
 \[\int \frac{\cos x}{\sin x} \, dx = \int \frac{1}{u} \, du = \ln |u| + C = \ln |\sin x| + C \]