• Name (print): __

• Instructions:
 – Keep your eyes on your own paper and do your best to prevent anyone else from seeing your work.
 – Do NOT communicate with anyone other than the professor/proctor for ANY reason in ANY language in ANY manner.
 – This exam is closed notes, closed books, and no calculator.
 – Turn all mobile devices off and put them away now. You cannot have them on your desk.
 – Write neatly and clearly indicate your answers. What I cannot read, I will assume to be incorrect.
 – Stop writing when told to do so at the end of the exam. I will take 5 points off your exam if I have to tell you multiple times.
 – Academic misconduct will not be tolerated. Suspected academic misconduct will be immediately referred to the Emory Honor Council. Penalties for misconduct will be a zero on this exam, an F grade in the course, and/or other disciplinary action that may be applied by the Emory Honor Council.

• Time: This exam has 7 questions on 9 pages including the title page. Please check to make sure all pages are included. You will have 75 minutes to complete this exam.

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Emory community. I have also read and understand the requirements and policies outlined above.

Signature: __

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>7</td>
<td>5</td>
<td>21</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Parameter Passing. Consider the following code:

```java
public class Parameters {
    public static void swap(int a, int b) {
        int temp = a;
        a = b;
        b = temp;
    }
    public static void main(String[] args) {
        int x = 10;
        int y = 20;
        swap(x, y);
        System.out.println("x: "+x+" y: "+y);
    }
}
```

(a) (1 point) List all of the local variables in the program above.

(b) (1 point) List all of the parameter variables in the program above.

(c) (1 point) List the names of all the methods in the program above.

(d) (2 points) What would the code print if the parameters were passed by value?

(e) (2 points) What would the code print if the parameters were passed by reference?
2. Write Java statements for each of the directions below.
 (a) (1 point) Create an array to hold 10 double values.

 (b) (1 point) Assign the value 6.9 to the last element of the array.

 (c) (1 point) Display the sum of the first two elements.

 (d) (1 point) Create another array with the initial values 3.5, 5.5, 7.5 and 9.5.

 (e) (1 point) Add the first element from the array created in part (a) to the first element
 of the array created in part (d) and assign the sum to a variable.

3. For each of the parts below, give the output of the code.
 (a) (4 points)
 public static String programming(String java, String python, String sql) {
 System.out.println("Programming in + sql " + sql + " is harder than " + java);
 System.out.println("but " + python + " is the easiest.");
 return "java";
 }

 public static void main(String[] args) {
 String sql = "java";
 String python = "sql";
 String java = "python";

 String x = programming(python, java, sql);
 programming(x, java, "sql")
 }
(b) (4 points)
public static void s(int[] a, int i, int j) {
 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
}

int[] x = {1, 2, 3, 4};
int[] y = x;
s(x, 0, 3)
System.out.println(Arrays.toString(x))
s(y, 1, 2)
System.out.println(Arrays.toString(y))

(c) (5 points)
public class Shadows {
 public static int x;
 public static void method1(int x) {
 System.out.println("x 1: "+x);
 x = Shadows.x;
 x = x + 1;
 System.out.println("x 2: "+x);
 }

 public static void main(String[] args) {
 x = 7;
 System.out.println("x 3: "+x);
 int x;
 x = 14;
 method1(x);
 System.out.println("x 4: "+x);
 System.out.println("x 5: "+Shadows.x);
 }
}

4
(d) (5 points)
int[] list = {0, 2, 0, 3, 4};
for(int i = 0; i < list.length-1; i++) {
 if (list[i] != 0) {
 list[i] = list[i] + list[i+1];
 } else {
 int temp = list[i];
 list[i] = list[i+1];
 list[i+1] = temp;
 }
}
System.out.println(Arrays.toString(list));

(e) (3 points)
int x = 3;
switch(x) {
case 1:
 System.out.println("This is case 1");
 break;
case 2:
 System.out.println("This is case 2");
case 3:
 System.out.println("This is case 3");
case 4:
 System.out.println("This is case 4");
 break;
default:
 System.out.println("This is the default case");
}
4. Consider the array:
\{2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79, 82, 91\}

(a) (2 points) List the elements in order that we will inspect when searching for the value 79 using a binary search.

(b) (2 points) List the elements in order that we will inspect when searching for the value 59 using a sequential (or linear) search.

(c) (6 points) The array \{9, 4, 6, 2, 3\} can be sorted via different sorting algorithms including Selection Sort, Insertion Sort, and Bubble Sort. Label each sequence of sorting steps below with the name of the algorithm used to sort the initial array. The initial array has been repeated for you as Step 1 for clarity.

i. Step 1: \{9, 4, 6, 2, 3\}
 Step 2: \{4, 9, 6, 2, 3\}
 Step 3: \{4, 6, 9, 2, 3\}
 Step 4: \{2, 4, 6, 9, 3\}
 Step 5: \{2, 3, 4, 6, 9\}

ii. Step 1: \{9, 4, 6, 2, 3\}
 Step 2: \{4, 6, 2, 3, 9\}
 Step 3: \{4, 2, 3, 6, 9\}
 Step 4: \{2, 3, 4, 6, 9\}
 Step 5: \{2, 3, 4, 6, 9\}

iii. Step 1: \{9, 4, 6, 2, 3\}
 Step 2: \{2, 4, 6, 9, 3\}
 Step 3: \{2, 3, 6, 9, 4\}
 Step 4: \{2, 3, 4, 9, 6\}
 Step 5: \{2, 3, 4, 6, 9\}
5. (10 points) You are tasked with writing some code for the game show, The Price is Right. Write a method `priceIsRight` that takes an array of integers `bids` and an integer `price` as parameters. The method returns the element in the `bids` array that is closest in value to `price` without being larger than `price`. For example, if `bids` stores the elements 250, 450, 1000, then `priceIsRight(bids, 280)` should return 250, since 250 is the bid closest to 280 without going over 280. If all bids are larger than `price`, then your method should return -1.

You may assume there is at least 1 element in the array, and you may assume that the price and the values in bids will all be greater than or equal to 1.

The following table shows the results of some calls to your method:

<table>
<thead>
<tr>
<th>Method Call</th>
<th>returned value</th>
</tr>
</thead>
<tbody>
<tr>
<td>priceIsRight({900, 885, 989, 1}, 880)</td>
<td>1</td>
</tr>
<tr>
<td>priceIsRight({200}, 320)</td>
<td>200</td>
</tr>
<tr>
<td>priceIsRight({500, 300, 241, 99, 501}, 50)</td>
<td>-1</td>
</tr>
</tbody>
</table>
6. (12 points) Write a function named `addElements` that takes in two arrays of doubles as parameters. Your function should add the corresponding elements of each array together and return the result in a new array. If the arrays are of unequal length, the method should simply use the elements in the longer array for the “unmatched” elements. Note that an array can be empty: `{}`.

Examples of function calls and returned arrays are below:

<table>
<thead>
<tr>
<th>Method Call</th>
<th>returned array</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>addElements({1, 5, 1}, {8, 3, 3})</code></td>
<td><code>{9, 8, 4}</code></td>
</tr>
<tr>
<td><code>addElements({1}, {5, 6, 7})</code></td>
<td><code>{6, 6, 7}</code></td>
</tr>
<tr>
<td><code>addElements({5, 3}, {})</code></td>
<td><code>{5, 3}</code></td>
</tr>
</tbody>
</table>
7. (10 points) The transpose of a matrix is one in which the rows have become columns and the columns have become rows. For example, the transpose of the matrix
\[
\begin{pmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i \\
\end{pmatrix}
\]
is the matrix
\[
\begin{pmatrix}
 a & d & g \\
 b & e & h \\
 c & f & i \\
\end{pmatrix}
\]
Write a method `transpose` which takes a 2D array of integers as a parameter. The method should not modify the input parameter and should return a new, transposed 2D array of integers. Remember that matrices are not necessarily square (e.g. the number of rows will not necessarily be the same as the number of columns), but you may assume that the input matrix is not “ragged” (ie, it will not have rows of differing lengths).