1. (a) (1 point) Write a single Java statement which creates and variable called `arr1` and initializes an array of 6 doubles with the values 4.0, 1.0, 2.0, 5.0, 3.0, and 6.0.

 Solution: `double[] arr1 = {4.0, 1.0, 2.0, 5.0, 3.0, 6.0};`

(b) (2 points) Assuming your code in (a) works correctly, write a single Java statement which adds the first and last element of `arr1` and puts the result in the array at index 3.

 Solution: `arr1[3] = arr[0] + arr[5];`

(c) (1 point) Evaluate the expression:

 `arr1.length + arr[2]`

 Solution: 8.0

2. (2 points) Fill in the blanks so the method will display the elements of the array in reverse order.

   ```java
   public static void printReverse(int[] array) {
       for (int i= ______________ ; __________________ ; ___________________ )
           System.out.print(array[i] + " ");
   }
   }
   ```

 Solution: `array.length-1, i>=0, i--`
3. (3 points) Fill in the blank so that each element in array is assigned twice the value of its index.

public static void twiceIndex(int[] array) {
 for (int i = 0; i < array.length; i++) {

 }
}

Solution: array[i] = i*2;

4. Give the output of each of the following code fragments assuming the initialized array:
 int[] array = {2, 4, 6, 8, 10, 1, 3, 5, 7, 9};

 (a) (2 points)
 for (int i=0; i <= 5; i++) {
 System.out.print(array[i] + " ");
 }

 Solution: 2 4 6 8 10 1

 (b) (2 points)
 for (int i=0; i < array.length; i+=2) {
 System.out.print(array[i] + " ");
 }

 Solution: 2 6 10 3 7

 (c) (2 points)
 for (int i=0; i < array.length; i+=2) {
 System.out.print(array[i] + " ");
 }

 Solution: 2 6 10 3 7