1. Write a function called saveSensors which takes an integer parameter, \(n \). The function should store \(n \) light sensor readings from the robot in a list. The function should return the list. Light sensor readings can be obtained by using the function getLight("center").

```python
def saveSensors(n):
    lightList = []
    for i in range(n):
        lightList.append(getLight("center"))
    return lightList
```

2. Write a function which takes an integer, \(n \), as a parameter. It that will print the numbers 1,2,3...\(n \) in that order. You must use only a FOR loop. When you have that working, re-write the function to use only a WHILE loop.

```python
def countup(n):
    for i in range(1,n+1,1):
        print i

def countup(n):
    i = 1
    while i < n+1:
        print i
        i = i+1
```

3. What is printed when the following code is executed?

```python
l = ["open", "close", "in", "out", "up", "down" ]
for i in range(0,6,2):
    print l[i]
```

```
open
in
up
```

4. Assume turn90degrees() has been defined as below so that the robot turns 90 degrees to the right. Assume nudge(x) has been defined to move the robot forward x units.

```python
def turn90degrees():
    turnRight(1,1)

def nudge(x):
    forward(1,x)
```
The following code makes the robot draw the trajectory on the right.

```python
nudge(1)
turn90degrees()
nudge(1)
nudge(2)
```

Draw the robot's trajectory when the following code is executed. Label the length of each move (nudge) using numbers as in the above example.

```python
turns = [2, 6]
for index in [2, 2, 6, 2, 1]:
    if index in turns:
        turn90degrees()
    nudge(index + 1)
```

Assuming robot starts facing north (up):
6. Examine the following code. Draw a sketch of what would be shown on-screen if the draw function were called.

```python
def draw():
    pic = takePicture()
    for x in range(getHeight(pic)):
        for y in range(0, getHeight(pic)):
            pix = getPixel(pic, x, y)
            if x == y:
                setRed(pix, 0)
                setGreen(pix, 0)
                setBlue(pix, 0)
    show(pic)
```

Obviously, the picture would have a background, etc. when taken from the robot.

7. The above code is inefficient because it examines every pixel in the image, when it doesn't need to. It only changes the pixel's color values if the x-coordinate is the same as the y-coordinate. We could modify the function to be:

```python
def draw():
    pic = takePicture()
    for i in range(0, getHeight(pic)):
        pix = getPixel(pic, i, i)
        setRed(pix, 0)
        setGreen(pix, 0)
        setBlue(pix, 0)
    show(pic)
```

8. Act like the python interpreter and "run" the following program. What does this program print?

```python
def fun1(x):
```
print "Fun1 x:", x
return x * 2

print "Start"
y = fun1(10)
if (5 > y):
 print y
elif (15 > y):
 print y + 10
elif (25 > y):
 print y + 100
elif (35 > y):
 print y + 1000
else:
 print y + 10000

print "End"

Start
Fun1 x: 10
120
End