This test is open book/notes. **Observe the Emory College Honor Code while taking this test.**

NOTE: show your work to get partial credit for incorrect answers — incorrect answers without any way to tell how the error occurred will not receive any credits.

Question 1. (20 points)

Give brief answers to the following questions (2 pts each)

1. What information is stored in the Instruction Register?

2. Give the 4 steps in the Instruction Execution Cycle.

3. Register \(d0\) contains the pattern

```
+-------------------+-------------------+-------------------+-------------------+
| 11111111 | 10101010 | 01010101 | 11110000 |
+-------------------+-------------------+-------------------+-------------------+
```

Show the content of register \(d0\) after executing the instruction \(\text{move.w } \#15,d0\)

```
+-------------------+-------------------+-------------------+-------------------+
|                    |                    |                    |                    |
+-------------------+-------------------+-------------------+-------------------+
```

4. Register \(d0\) contains the same pattern as the previous question. Show the content of register \(d0\) after executing the instruction \(\text{move.w } \#-15,d0\)

```
+-------------------+-------------------+-------------------+-------------------+
|                    |                    |                    |                    |
+-------------------+-------------------+-------------------+-------------------+
```
5. Show the 32 bit binary pattern in register D0 after executing the following assembler instructions:

\[
\text{move.l \#-1, d0} \\
\text{move.b \#1, d0}
\]

Answer:

+----------+----------+----------+----------+
| | | | |
+----------+----------+----------+----------+

6. What value is represented by the 8-bits 2’s complement code 11011101?

7. What is the 8-bits 2’s complement code for the value −19?

8. Show the 32 bit binary pattern in register D0 after executing the following assembler instructions:

\[
\text{move.l \#7, d0} \\
\text{divs \#3, d0}
\]

Answer:

+----------+----------+----------+----------+
| | | | |
+----------+----------+----------+----------+

9. Show the Octal (base-8) representation for the binary number 101011102:

Answer:

10. Show the Binary (base-2) representation for the Octal number 3648:

Answer:
Question 2. (20 pts)

All the number representation in this question are given in the base-3 representation!

Questions

- Given a number representation in the base-3 number system: 212_3.
 What is the *value* represented by this representation? (5 pts)

- Compute the following addition in base-3 arithmetic. (5 pts)
 \[
 \begin{array}{cccccccccccc}
 1 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
 + & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 \\
 \hline
 \end{array}
 \]

- Compute the following subtraction in base-3 arithmetic. (5 pts)
 \[
 \begin{array}{cccccccccccc}
 2 & 0 & 1 & 2 & 2 & 0 & 1 & 2 & 1 & 1 & 2 & 1 & 2 & 1 & 2 & 1 \\
 - & 1 & 1 & 2 & 1 & 2 & 1 & 1 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
 \hline
 \end{array}
 \]

- Compute $212_3 \times 212_3$ in base-3 arithmetic. Show the tail multiplication to get credits. (5 pts)
 \[
 \begin{array}{cccccccccccc}
 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 \\
 \hline
 \end{array}
 \]
Question 3. (10 pts)

- Given the following fixed point decimal number: 13.8125_{10}
 Give the fixed point binary (base-2) representation of this number. (5 pts)

- Give the IEEE float representation of the fixed point decimal number: \(-13.8125_{10}\) (5 pts)
 Note: use your answer on the previous question!
Question 4. (10 pts)

The variables \(x \), \(y \), \(z \) and \(\text{head} \) have been defined as follows:

- \(\text{short } x[] = \{2, 4, 5\}; \) // Initialized array with 3 values
- \(\text{int } y[10]; \) // Uninitialized array
- \(\text{final int } z = 10; \) // A symbolic constant value \(z \)
- \(\text{List head; } \) // A reference variable to a List object

Give the equivalent construct in M68000 assembler used to:

- Create the initialized array variable \(x \) (3 pts)
- Create the uninitialized array variable \(y \) (2 pts)
- Define the symbolic constant \(z \) (3 pts)
- Create the reference variable \(\text{head} \) (2 pts)
Question 5. (20 pts)

The variables A, B, i, j and $head$ have been defined as follows: (you do not need to define them, just use them)

```c
byte i, A[10];
short j, B[10];
int k, C[10];

class List {
    byte value1;
    byte value2;
    int value3;
    List next;
}

List head;
```

The $head$ variable contains the address of the first element of a linked list whose elements have the structure given by the $List$ class.

Note: pay special attention to the operand size!

Translate the following assignment statements into M68000 instructions

1. $i = \text{byte} \ C[6]$; (5 pts)

2. $C[i+k] = j$; (5 pts)
3. head.next.next.value3 = i; (5 pts)

4. C[A[i]] = head.next.next.value2; (5 pts)
Question 6. (20 pts)

The variables x, y and z have been defined as follows: (you do not need to define them, just use them)

```c
byte x;
short y;
int z;
```

Translate the following assignment statements into M68000 instructions

1. \(z = -(y/x++)\); (10 pts)

2. \(z += y\%5 + ++x\); (10 pts)