MINIMUM DEGREE CONDITIONS FOR A GRAPH TO BE PAN-k-LINKED

JEFFREY POWELL, BRIAN WAGNER, AND THOR WHALEN

Abstract. For a k-linked graph G and a set S of $2k$ distinct vertices of G, let T denote the minimum order of a k-linkage for S in G. A graph G is said to be pan-k-linked if it is k-linked and for all sets S of $2k$ distinct vertices of G, there exists a k-linkage of order t for all t such that $T \leq t \leq |V(G)|$. We show that for $k \geq 3$ and $n \geq 4k$, a graph on n vertices satisfying $\delta(G) \geq \frac{n+2}{2}$ is pan-k-linked.

1. Introduction

Definition 1.1. A path-system \mathcal{P} of G is a family of vertex-disjoint paths P_1, P_2, \ldots, P_k of G.

Definition 1.2. A graph G is said to be k-linked if for every $2k$ distinct vertices $a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_k$, G has a path-system $\mathcal{P} = P_1, P_2, \ldots, P_k$ such that, for all i, P_i is an $[a_i, b_i]$-path.

Definition 1.3. Let $S = \{a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_k\}$ be a set of $2k$ vertices of G. We say that a path-system $\mathcal{P} = P_1, P_2, \ldots, P_k$ is a k-linkage for S if for all i, P_i is an $[a_i, b_i]$-path.

Definition 1.4. A graph G is said to be pan-k-linked if it is k-linked and for all sets S of $2k$ distinct vertices of G, there exists a k-linkage of order t for all t such that $T \leq t \leq |V(G)|$, where T denotes the minimum order of a k-linkage for S in G.

Definition 1.5. In a k-linked graph G, a k-linkage $\mathcal{P} = P_1, P_2, \ldots, P_k$ is called a proper k-linkage if

$$\sum_{i=1}^{k} |V(P_i)| < |V(G)|.$$

Theorem 1.6. [1] If G is a graph on $n \geq 4k$ vertices with $\sigma_2(G) \geq n + 2k - 3$, then G is k-linked.

Theorem 1.7 (Williamson or Hendry?). If G is a graph on n vertices with $\delta(G) \geq \frac{n+2}{2}$, then G is panconnected.

Theorem 1.8. [2] Let S be an H-subdivision on \overline{S}, R be a set of vertices not in S, and $A = V(S) \cup R$. Then, if $\delta(R, A) > \alpha(S) + |R| - 1$, then R is insertible in S.

2. Results

Theorem 2.1. If $k \geq 3$, $n \geq 4k$, and $\delta(G) \geq \frac{n+2k-1}{2}$, then G is k-linked in such a way that for every set S of $2k$ distinct vertices of G, every proper k-linkage
\(\mathcal{P} = P_1, P_2, \ldots P_k\) for \(S\) can be extended to a \(k\)-linkage \(\mathcal{P}' = P_1', P_2', \ldots P_k'\) for \(S\) such that
\[
\sum_{i=1}^{k} |V(P_i')| = \left(\sum_{i=1}^{k} |V(P_i)|\right) + 1.
\]

Proof. Note that since \(\delta(G) \geq \frac{n+2k-1}{2} > \frac{n+2k-3}{2}\), \(G\) is \(k\)-linked by Theorem 1.6. If for every set \(S\) of \(2k\) distinct vertices of \(G\), we have that every proper \(k\)-linkage for \(S\) can be extended by one more vertex, then we are done. So, assume there exists a set \(S\) which has a proper \(k\)-linkage that cannot be extended by one vertex. Among all \(k\)-linkages for this \(S\) with this property, choose the \(k\)-linkage \(P = P_1, P_2, \ldots P_k\) such that \(\sum_{i=1}^{k} |V(P_i)|\) is minimized. We now wish to show that we can extend \(P\) by one vertex.

Let \(Q = G \setminus P\). Also, let \(p = \sum_{i=1}^{k} |V(P_i)|\) and \(q = |V(Q)|\). Note that no vertex in \(Q\) can be adjacent to two adjacent vertices on any \(P_i\) because otherwise we could extend our \(k\)-linkage by one more vertex.

Thus,
\[
\delta(Q, P) \leq \frac{p + k}{2}
\]
and for all \(w \in V(Q)\),
\[
deg_Q(w) \geq \frac{n + 2k - 1}{2} - \sum_{i=1}^{k} \alpha(P_i)
= \frac{n + 2k - 1}{2} - \sum_{i=1}^{k} \left\lfloor \frac{|V(P_i)|}{2} \right\rfloor
\geq \frac{n + 2k - 1}{2} - \sum_{i=1}^{k} \frac{|V(P_i)| + 1}{2}
= \frac{n + 2k - 1}{2} - \frac{p}{2} - \frac{k}{2}
\geq \frac{q + k - 1}{2}.
\]

Since \(k \geq 3\), we have that \(\frac{q + k - 1}{2} > \frac{q + k}{2}\). Consequently, by Theorem 1.7, \(Q\) is panconnected. Note that this degree condition also implies that for all \(x, y \in V(Q)\),
\[
d(x, y) \leq 2.
\]

Now if \(q < k\), then
\[
\delta(Q, P) \geq \frac{n + 2k - 1}{2} - (q - 1)
= \frac{n + 2k - 1 - 2q + 2}{2}
= \frac{p + q + 2k - 1 - 2q + 2}{2}
= \frac{p - q + 2k + 1}{2}
\geq \frac{p + k + 1}{2}.
\]

However, this contradicts equation 2.1. Thus, \(q \geq k + 1\).
We now wish to show that no vertex of Q can be adjacent to two vertices x, y on any P_i of P such that $2 \leq d_{P_i}(x, y) \leq q - 1$ (Note that the case where $d_{P_i}(x, y) = 1$ has been taken care of in the above argument). To show this, we will assume the opposite is true. That is, assume there exists a $w \in Q$ and a P_i in P such that $x, y \in N_{P_i}(w)$ and $2 \leq d_{P_i}(x, y) \leq q - 1$. Let R be the path between x and y on P_i (not including x and y). We will assume that x and y are chosen so that w has no neighbors on R. Let $r = |V(R)|$. Thus, we have $d_{P_i}(x, y) = r + 1$.

Assume first that $r \geq 4$. Let u be a vertex of R. Either $d_{P_i}(u, x) \geq 3$ or $d_{P_i}(u, y) \geq 3$. Assume, without loss of generality, that the former is true. We know that u is not adjacent to w. If u has a neighbor $v \in Q \setminus \{w\}$, then by the panconnectedness of Q we know there exists a $[v, w]$-path R' in Q of length $d_{P_i}(u, x) - 1$. Thus, we can extend our k-linkage by one vertex by removing the vertices of R from P_i and using the path $xwR'vy$ to complete P_i.

Therefore, we assume that no vertex of R has a neighbor to $Q \setminus \{w\}$. So, for every vertex u of R, $\deg_{Q}(u) = \deg_{P}(u) \geq \frac{n + 2k - 1}{2}$. Consider the path-system $B = B_1, B_2, \ldots, B_k, B_{k+1}$ where $B_j = P_j$ for $j \neq i, j \neq k + 1$ and B_i, B_{k+1} are the two paths created from P_i by removing the path R. We will now picture B as an H-subdivision on S (our set of $2k$ distinct vertices) where H is the graph consisting of $k + 1$ independent edges. Let $A = V(B) \cup R = P$. Then since for all vertices u of R, $\deg_{P}(u) \geq \frac{n + 2k - 1}{2}$, we have that

$$\delta(R, A) \geq \frac{n + 2k - 1}{2} = \frac{p + q + k + k - 1}{2} > \frac{p + r + k - 1}{2} = \frac{p - r + k + 1}{2} + r - 1 \geq \alpha(B) + |R| - 1.$$

Note here that we have used the facts that $q + k > r$ and $\alpha(B) = \lceil \frac{q - r + k}{2} \rceil$. So, by Theorem 1.8, R is inseparable in B. Insert the vertices of R into B. This leaves a $k + 1$ path-system B' which has order p and the same path endpoints as the path-system B. Thus, we may now use the edges xw and wy to form our k-linkage for S of order $p + 1$.

Consequently, assume that $r \leq 3$.

\[\square \]

Corollary 2.2. If $k \geq 3$, $n \geq 4k$, and $\delta(G) \geq \frac{n + 2k - 1}{2}$, then G is pan-k-linked.

References
