Ore-type degree conditions, Path-Systems and Linkages in Graphs

Abstract

Let G be a graph of order n and $\sigma_2(G) = \min\{d(u) + d(v) : uv \notin E(G)\}$. It is easy to see that if $\sigma_2(G) \geq n - 1$, then G is connected. Further, any pair $u, v \in V(G)$ of non-adjacent vertices are the end-vertices of a path of size two. Ore proved that if $\sigma_2(G) \geq n + 1$, then for any pair $u, v \in V(G)$ of distinct vertices, there is a $[u, v]$-path covering all vertices of G. In this paper, we generalize these results to higher connectivities, giving the minimum lower bounds on $\sigma_2(G)$ which ensure the existence minimal and maximal path-systems and linkages between sets of vertices.

1 Preliminaries

Unless otherwise specified, in this paper, $G = (V, E)$ will denote a simple loopless graph with $|V(G)| = n$. Let K_n represent the complete graph (meaning, having all possible edges) on n vertices. For $u \in V(G)$, let

$$N(u) = \{v \in V(G) : uv \in E(G)\},$$

$$d(u) = |N(u)|$$

and

$$\sigma_2(G) = \min\{d(u) + d(v) : uv \notin E(G)\}.$$

A graph G is said to be connected if for any two distinct vertices $u, v \in V(G)$, there is a $[u, v]$-path in G. It is easy to see that if a graph G or order n is such that $\sigma_2(G) \geq n - 1$ then G must be connected. Indeed, take any two non-adjacent vertices u and v of G; since $d(u) + d(v) \geq n - 1 > |G - u - v|$, there must be a vertex $w \in N(u) \cap N(v)$, hence the connectivity of G.

The distance dist(u, v) between two vertices u and v of a graph G is defined to be the minimum size (number of edges) of a $[u, v]$-path. The diameter diam(G) of G is the maximum possible distance between two vertices of G. If G is disconnected (not connected) we let diam$(G) = \infty$. The argument of the previous paragraph shows us that

Fact 1 If $\sigma_2(G) \geq n - 1$, then diam$(G) \leq 2$.

1
Note that the condition $\sigma_2(G) \geq n - 2$ does not even ensure connectivity, as exemplified by a graph having two complete components. This shows that the lower bound $\sigma_2(G) \geq n - 1$ is best possible.

The graph G is said to be Hamilton-connected if for any pair (u, v) of vertices of G, there exists a Hamiltonian path between u and v (that is, a $[u, v]$-path covering all the vertices of G). Ore [2] proved that

Theorem 1 If $\sigma(G) \geq n + 1$ then G is Hamilton-connected.

The lower bound on $\sigma_2(G)$ is the best possible, as exemplified by a balanced complete bipartite graph (a graph constituted of two sets X and Y of $\frac{n}{2}$ vertices each, no edges inside X or Y, but all edges between X and Y).

A graph G is said to be k-connected if one must remove at least k vertices to either disconnect the graph, or leave only one vertex. In other words, G is k-connected if for any set $S \subseteq V(G)$, if $G - S$ has only one vertex, or more than one component, then $|S| \geq k$. The connectivity $\kappa(G)$ of a graph G is the maximum k such that G is k-connected. As a consequence of Menger’s famous theorem of 1927 [1], we have

Theorem 2 A graph G is k-connected if and only if for any pair (A, B) of disjoint k-sets of $V(G)$, there are k disjoint paths joining every vertex of A to a vertex of B.

In light of the equivalence pointed out by Theorem 2, graph theorists were brought to the following alternate measure of connectivity:

Definition 1 A graph G is said to be k-linked if for every $2k$ distinct vertices $a_1, \ldots, a_k, b_1, \ldots, b_k$, G contains k disjoint paths P_1, \ldots, P_k such that, for all i, P_i is a $[a_i, b_i]$-path.

The objective of this paper is to generalize Fact 1 and Theorem 1 to k-connectivity (in the sense of the equivalence pointed out in Theorem 2) and k-linkages.

2 Generalization

Let $V_k(G)$ be the family of all k-tuples of vertices of a graph G.

Let $A = (a_1, \ldots, a_k)$ and $B = (b_1, \ldots, b_k)$ be a disjoint pair of elements of $V_k(G)$. An (A, B)-system \mathcal{P} is a set of k vertex-disjoint paths P_1, \ldots, P_k
joining the vertices of A to the vertices of B (i.e. for every $\lambda \in [k]$, there exists $i, j \in [k]$ such that P_λ is a $[a_i, b_j]$-path.) An (A, B)-linkage is an (A, B)-system in which, for every $P_i \in \mathcal{P}$, P_i joins a_i to b_i. Thus an (A, B)-linkage is an (A, B)-system in which we get to specify the end vertices of the paths.

Let $\mathcal{S}(A, B)$ and $\mathcal{L}(A, B)$ denote the family of all (A, B)-systems and (A, B)-linkages of G respectively. Let $V_k^2(G)$ be the family of all pairs (A, B) of disjoint k-tuples of vertices of G.

The distance between two disjoint k-sets A and B of vertices may be defined in several natural ways, according to wether we take the size of the smallest (A, B)-system (resp. (A, B)-linkage), the size of the smallest possible path in an (A, B)-system (resp. (A, B)-linkage), or the size of the largest path in a minimum size (A, B)-system (resp. (A, B)-linkage). These different measures of distance imply different measures of diameters. Formally, for any disjoint k-sets A and B of vertices of a graph G, let

$$
\text{dist}_k(A, B) = \min_{P \in \mathcal{S}(A, B)} (|P| - k),
$$

$$
\overline{\text{dist}}_k(A, B) = \min_{P \in \mathcal{S}(A, B)} \max_{P \in \mathcal{P}} (|P| - 1),
$$

$$
\underline{\text{dist}}_k(A, B) = \min_{P \in \mathcal{S}(A, B)} \min_{P \in \mathcal{P}} (|P| - 1),
$$

$$
\text{diam}_k(A, B) = \max_{(A, B) \in V_k^2(G)} \text{dist}_k(A, B),
$$

$$
\overline{\text{diam}}_k(A, B) = \max_{(A, B) \in V_k^2(G)} \overline{\text{dist}}_k(A, B), \text{ and}
$$

$$
\underline{\text{diam}}_k(A, B) = \max_{(A, B) \in V_k^2(G)} \underline{\text{dist}}_k(A, B).
$$

The corresponding linked distances and diameters ldist_k, $\overline{\text{ldist}}_k$, $\underline{\text{ldist}}_k$, ldiam_k, $\overline{\text{ldiam}}_k$, $\underline{\text{ldiam}}_k$ are defined similarly, by replacing $\mathcal{S}(A, B)$ with $\mathcal{L}(A, B)$.

Note that saying that G is k-connected is equivalent to saying that $\text{diam}_k(G) < \infty$ (or equivalently, $\overline{\text{diam}}_k(G) < \infty$). Similarly, saying that G is k-linked is equivalent to saying that $\text{ldiam}_k(G) < \infty$ (or equivalently, $\overline{\text{ldiam}}_k(G) < \infty$).

We say that G is Hamilton k-connected (resp. k-linked) if for any $(A, B) \in V_k^2(G)$, there is a \mathcal{P} in $\mathcal{S}(A, B)$ (respectively, in $\mathcal{L}(A, B)$) such that \mathcal{P} covers all the vertices of G.

3
3 Results

One may easily see that $\sigma_2(G) \geq n + k - 2$ implies $\kappa(G) \geq k$. Indeed, this is the contrapositive of

$$\kappa(G) \leq k - 1 \implies \sigma_2(G) \leq n + k - 3 \quad (1)$$

which can be seen to be true since if C is a cut set of order $k - 1$ and A and B were two components of $G - C$, then taking two vertices $x \in A$ and $y \in B$, we see that $xy \in E(G)$ yet

$$d(x) + d(y) \leq (|A| - 1) + |C| + (|B| - 1) + |C| \leq n + k - 3.$$

By considering the case where A and B are the only components of G, and both $(A \cup C)$ and $(B \cup C)$ induce complete graphs, we see that $\sigma_2(G) = n + k - 3$, yet $\kappa(G) = k - 1$, so the bound on $\sigma_2(G)$ is the best possible.

We show that in fact $\sigma_2(G) \geq n + k - 2$ implies $\text{diam}_k(G) \leq 2k$. This diameter is essentially the lowest possible in the sense that, in order to reduce it further, one must have a graph that is nearly complete, but the actual lowest possible k-diameter of a graph is k, so for completeness, we include the bounds on $\sigma_2(G)$ implying lower diameters than $2k$.

Theorem 3 Let G be a graph of order $n \geq 2k$ and $l \in [k]$. The following table relates the value of $\sigma_2(G)$ to the lowest upper bound on the k-diameter of G.

<table>
<thead>
<tr>
<th>$\sigma_2(G)$</th>
<th>$\text{diam}_k(G)$</th>
<th>$\text{diam}_k(G)$</th>
<th>$\text{diam}_k(G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq n + k - 3$</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$n + k - 2 \leq \sigma_2(G) \leq 2n - 2k - 2$</td>
<td>$2k$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$\sigma_2(G) = 2n - 2k - 2 + l$</td>
<td>$2k - l$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$2n - k - 2 \leq \sigma_2(G)$</td>
<td>k</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

We see that the minimum bound on $\sigma_2(G)$ ensuring $\text{diam}_k(G) < \infty$ (k-connectivity) is $n + k - 2$, and when this happens, we have automatically the small diameter of $2k$. Then, until $2n - 2k - 1$ we cannot lower the diameter further. At $2n - k - 2$ we attain the smallest possible diameter $\text{diam}_k(G) = k$ (equivalently, $\text{diam}_k = \text{diam}_k = 1$).

Note that $\sigma_2(G)$ can larger than $2n - 4$, and that those graphs G for which $\sigma_2(G) = 2n - 4$ have the property that a vertex cannot have more than one
non-adjacency. Hence these graphs are isomorphic to $K_n - M_m$ where M_m is a set of m independent edges of K_n for some $m \in \lfloor n/2 \rfloor$. The following Theorem relates the value of $\sigma_2(G)$ to the linked-diameters of G. Since even $\sigma_2(G) = 2n - 4$ is not sufficient to force $ldiam_k(G) < 2k$, we include the linked-diameters of the $K_n - M_m$ graphs.

Theorem 4 Let G be a graph of order $n \geq 4k$ and $l \in [k]$. Let M_{k-l} be a set $k-l$ independent edges of a complete graph K_n. The following table relates the value of $\sigma_2(G)$ to the lowest upper bound on the linked-diameters of G.

<table>
<thead>
<tr>
<th>$\sigma_2(G)$ $\leq n + 2k - 4$</th>
<th>$ldiam_k(G) \leq$</th>
<th>$ldiam_k(G) \leq$</th>
<th>$ldiam_k(G) \leq$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_2(G) = n + 2k - 4 + l$</td>
<td>$3k - l$</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>$n + 3k - 4 \leq \sigma_2(G)$</td>
<td>$2k$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$G = K_n - M_{k-1}$</td>
<td>$2k - l$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$G = K_n$</td>
<td>k</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

In order to generalize Theorem 1 we prove that

Lemma 1 If $n \geq 4k$, and $\sigma_2(G) \geq n + k$, then, for any disjoint k-tuples $A, B \in V_k(G)$, if there exists an (A, B)-linkage, then there exists a Hamiltonian (A, B)-linkage. On the other hand, if $\sigma_2(G) < n + k$, G may have (A, B)-systems which may not even be extended to Hamiltonian (A, B)-systems.

Using this Lemma, we see that Theorems 3 and 4 have the following corollaries:

Corollary 5 If $n \geq 2k$ and $\sigma_2(G) \geq n + k$ then G is Hamiltonian k-connected.

Corollary 6 If $k \geq 2$, $n \geq 4k$, and $\sigma_2(G) \geq n + 2k - 3$, then G is Hamiltonian k-linked.

4 Proof of Theorems

For two given subgraphs F and H of G, we denote by F_H the subgraph of G induced by the vertices of F in H (i.e. the graph with vertex set $V(F)$ and edge set $E(F) \cap E(H)$).
For any given subgraphs A and B of G, let $N(A)$ be the set of vertices of G that are adjacent to at least one vertex of A, let $E(A, B)$ be the set of edges that have an end vertex in A and the other in B, let $d(A, B) = |E(A, B)|$ (so for a given vertex $v \in V(A)$, $d(v, B) = N(v) \cap V(B)$, let $\delta(A) = \min_{v \in V(A)}\{d(v)\}$ let $\delta(A, B) = \min_{v \in V(A)}\{d(v, B)\}$.

Let $P = z_1 \cdots z_m$ be a path of G and $z = z_i$ be a vertex of $V(P)$. If $i \geq 2$, the predecessor z^- of z is the vertex z_{i-1}. If $i \leq n - 1$, the successor z^+ of z is the vertex z_{i+1}. For two vertices $z_i, z_j \in V(P)$, we let $[z_i, z_j]_P$ (or simply $[z_i, z_j]$ when the context is clear) be the subpath of P between z_i and z_j.

Let K_n be the complete graph on n vertices. If A and B are two disjoint graphs, let $A + B$ represent the graph having vertex set $V(A) \cup V(B)$ and edge set $E(A) \cup E(B)$ along with all possible edges between A and B.

Fact 2 Let G be a graph, P be a $[u, v]$-path of G, and $w \in V(G - P)$. If $d(w, P) \geq \left\lceil \frac{|P| + 1}{2} \right\rceil$, then P may be extended to a $[u, v]$-path P' of order $|P| + 1$.

Proof: Let $P = \{x_1, \ldots, x_p\}$. If $d(w, P) \geq \left\lceil \frac{p + 1}{2} \right\rceil$, then there is an $i \in [p]$ such that $wx_i, wx_{i+1} \in E(G)$, thus the $[x_1, x_p]$-path

$$P' = [x_1, x_i]x_iwx_{i+1}[x_{i+1}, x_p]$$

which we predicted.\square

Proof of Theorem 3:

Suppose G satisfies the conditions of Theorem 3 and take any $(A, B) \in V_k(G)$ where $A = (a_1, \ldots, a_k)$ and $B = (b_1, \ldots, b_k)$. Let e_1, \ldots, e_s be a maximal independent set of edges of $E(A, B)$; without loss of generality, we may assume that $e_1 = a_1b_1, \ldots, e_s = a_sb_s$. Let $A' = \{a_1, \ldots, a_s\}$ and $B' = \{b_1, \ldots, b_s\}$.

If $s = k$, we are done, so assume $s \leq k - 1$. Now

$$d(a_t, A) \leq |A| - 1 = k - 1, \quad d(b_t, B) \leq |B| - 1 = k - 1,$$

(2)

and

$$d(a_t, B) + d(b_t, A) \leq s,$$

(3)

since $E(A - A', B - B') = \emptyset$ and if $d(a_t, B') + d(b_t, A') > s$, there were a $1 \leq t' \leq s$ such that $a_tb_{t'}, b_ta_{t'} \in E(G)$, thus replacing $a_tb_{t'}$ with these two
edges, we would contradict the maximality of the independent set of edges we started with. Also, for all \(s+1 \leq t \leq k \), \(a_t b_t \notin E(G) \), so \(d(a_t) + d(b_t) \geq \sigma_2(G) \).

Hence, if \(\sigma_2(G) \geq n + k - 2 \) then

\[
d(a_t, G - A - B) + d(b_t, G - A - B) \geq (n + k - 2) - (d(a_t, A) + d(a_t, B) + d(b_t, A) + d(b_t, B)).
\]

So by (2) and (3),

\[
d(a_t, G - A - B) + d(b_t, G - A - B) \geq (n + k - 2) - 2(k - 1) - s = (n - 2k) + (k - s),
\]

which, since \(|G - A - B| = n - 2k \), shows that \(|N(a_t, G - A - B) \cap N(b_t, G - A - B)| \geq k - s \). This ensures that there are \((k - s) \) distinct vertices \(z_{t+1}, \ldots, z_k \) of \(G - A - B \) such that \(z_t \) is adjacent to both \(a_t \) and \(b_t \) for \(s + 1 \leq t \leq k \), thus the existence of the required \((A, B)\)-system.

The \((A, B)\)-system constructed verifies \(\text{diam}_k(G) \leq 2 \), thus \(\text{dist}_k(A, B) \leq 2k \). Since the pair \((A, B)\) was arbitrary, \(\text{diam}(G) \leq 2 \) and \(\text{diam}_k(G) \leq 2k \).

If \(\sigma_2(G) \geq 2n - 2k - 2 + l \), where \(l \in [k] \), then for all \(s + 1 \leq t \leq k \),

\[
d(a_t, B) + d(b_t, A) \geq (2n - 2k - 2 + l) - (d(a_t, G - A - B) + d(b_t, G - A - B) + d(a_t, A) + d(b_t, B)),
\]

thus, since

\[
d(a_t, G - A - B) + d(b_t, G - A - B) \leq 2|G - A - B| = 2n - 4k,
\]

using (2), we get

\[
d(a_t, B) + d(b_t, A) \geq (2n - 2k - 2 + l) - (2n - 4k + 2(k - 1)) = l
\]

By (3) then, we get \(s \geq l \), which shows that \(\text{diam}(G) = 1 \) and \(\text{diam}(G) \leq 2k - l \).

We have already seen, in section 3 that \(\sigma_2(G) \leq n + k - 2 \) is the lowest bound implying \(k \)-connectivity, or equivalently a finite diameter. To see that \(\sigma_2(G) = 2n - 2k - 2 + l \) is the smallest value of \(\sigma_2(G) \) implying \(\text{diam}_k(G) \leq 2k - l \), consider the complete graph \(K_n \), and two disjoint \(k \)-tuples \(A \) and \(B \).
and a subset $B_{k-l+1} \subset B$ of order $k-l+1$. Then the graph $G = K_n - E_{K_n}(A, B_{k-l+1})$ verifies $\sigma_2(G) = 2n - 2k - 3 + l$, yet $\text{dist}_k(A, B) = 2k - l + 1$. By letting $l = 1$ we also see that $\sigma_2(G) = 2n - 2k - 2$ is not enough to yield $\text{diam}_k(G) = 1$ of $\text{diam}_k(G) < 2k$.

\[\square \]

Proof of Theorem 4:

Theorem 4 is a consequence of the three following Claims.

Claim 1 If G is a graph on $n \geq 4k$ vertices and $\sigma_2(G) \geq n + 2k - 3$ then $\text{ldiam}_k(G) \leq 3$.

Let G be a graph such that $\sigma_2(G) \geq n + 2k - 3$ (6) where k is an integer such that $n \geq 4k$. Let $S = \{a_1, \cdots, a_k, b_1, \cdots, b_k\}$ be any set of $2k$ disjoint, $A = (a_1, \cdots, a_k)$, and $B = (b_1, \cdots, b_k)$. Let $\mathcal{P} = \{P_1, \cdots, P_{k'}\}$ be a family of paths linking k' vertices of A to the corresponding vertices of B, where all paths have order no more than 4, and without loss of generality we assume that for every i (1 $\leq i \leq k'$), P_i links a_i to b_i, and that for some non-negative integers t_1, t_2, t_3, t_4 (with $t_1 + t_2 + t_3 = k'$), $|P_1| = \cdots = |P_{t_1}| = 2$, $|P_{t_1+1}| = \cdots = |P_{t_1+t_2}| = 3$, and $|P_{t_1+t_2+1}| = \cdots = |P_{t_1+t_2+t_3}| = 4$. We choose \mathcal{P} so that $k' = |\mathcal{P}|$ is maximal, (7) and under this condition, $\Sigma^k_{i=1} |P_i|$ is minimal, (8) and under this condition, $\max_{i > k'} \min_{i \geq k'} \{d(a_i, G - S - V(\mathcal{P})), d(b_i, G - S - V(\mathcal{P}))\}$ is maximal. (9)

Let $R = V(G) - S$. By (8), for every i ($t_1 + 1 \leq i \leq k$), $a_i b_i \notin E(G)$ so that

$\begin{align*}
d(a_i, S), d(b_i, S) &\leq |S| - 2 = 2k - 2, \quad \text{thus} \\
d(a_i, S) + d(b_i, S) &\leq 4k - 4.
\end{align*}$

8
Note that if \(k' = k \) then we have our result, so assume \(k' < k \) (i.e. \(t_4 \geq 1 \)) and let \(S_1 = S \cap \bigcup_{i=1}^{t_1} V(P_i) \), \(S_2 = S \cap \bigcup_{i=t_1+1}^{t_2} V(P_i) \), \(S_3 = S \cap \bigcup_{i=t_1+t_2+1}^{t_3} V(P_i) \), and \(S_4 = S - S_1 - S_2 - S_3 \). Let \(R_2 = R \cap \bigcup_{i=t_1+t_2+1}^{t_3} V(P_i) \), \(R_3 = R \cap \bigcup_{i=t_1+t_2+t_3+1}^{t_4} V(P_i) \), and \(R_4 = R - R_2 - R_3 \).

Let \(u = a_j \) and \(v = b_j \) where \(k'+1 \leq j \leq k \) is such that \(\min \{ d(u, R_4), d(v, R_4) \} = \max_{i > k'} \min \{ d(a_i, R_4), d(b_i, R_4) \} \). Let \(\alpha = d(u, R_4) \) and \(\beta = d(v, R_4) \) and assume, without loss of generality, that \(\alpha \leq \beta \).

Note that

\[
d(\{u, v\}, R_3) \leq 2t_3
\]

(12)
since otherwise there would be an \(t_1 + t_2 + 1 \leq i \leq t_1 + t_2 + t_3 \) such that \(d(\{u, v\}, P_i \cap R) \geq 3 \), implying that one of the two vertices \(w \) of \(P_{i-a_i-b_i} \) is adjacent to both \(u \) and \(v \). Yet then the path \(P_i \) of order 4 may be replaced with the path \(uwu \) of order 3, contradicting the minimality (8).

Case 1: Assume \(\alpha \geq 1 \). Then let \(x \) and \(y \) be any vertices of \(N(u, R_4) \) and \(N(v, R_4) \) respectively.

We prove a few upper bounds on the number of edges between vertices \(u, v, x \) and \(y \), and different parts of the graph. First of all,

\[
d(\{x, y\}, S_2 \cup R_2) + d(\{u, v\}, R_2) \leq 6t_2.
\]

(13)

Indeed, if this isn’t the case, then for some \(t_1 + 1 \leq i \leq t_1 + t_2 \), we must have \(d(\{x, y\}, P_i) + d(\{u, v\}, P_i \cap R) \geq 7 \). Note that

\[
|\{x, y\}| \cdot |P_i| + |\{u, v\}| \cdot |P_i \cap R| = 8,
\]

so there is at most one missing edge. Let \(P_i = a_iwb_i \). If edge \(uw \) is missing then

\[
\mathcal{P}' = (\mathcal{P} - P_i) \cup vwxu \cup a_iyb_i
\]

contradicts the maximality (7). One may verify that every other case of a missing edge leads to a similar situation where one may find two disjoint paths; a \((u, v) \)-path of order 3 and an \((a_i, b_i) \)-path of order 3, contradicting (7).

Further,

\[
d(\{x, y\}, S_3 \cup S_4) \leq 2(t_3 + t_4)
\]

(14)
as if this were not true, there would be an \(t_1 + t_2 + 1 \leq i \leq k \) such that \(d(\{x, y\}, \{a_i, b_i\}) \geq 3 \), ensuring the existence of the path \(a_ixb_i \) (or \(a_iyb_i \)) of order 3. If \(t_1 + t_2 + 1 \leq i \leq t_1 + t_2 + t_3 \), this contradicts (8), and if \(t_1 + t_2 + t_3 + 1 \leq i \leq k \), this contradicts (7).
Since \(|S_1| = 2t_1\) and \(|R_3| = 2t_3\) we have

\[
d(\{x, y\}, S_1 \cup R_3) \leq 4(t_1 + t_3).
\]

(15)

Finally, if \(d(x, N(v) \cap R_4) \neq 0\) or \(d(y, N(u) \cap R_4) \neq 0\), then (7) would be contradicted, so

\[
d(x, R_4) \leq |G - x| - |S| - |R_2| - |R_3| - |N(v, R_4)|
= n - 1 - 2k - t_2 - 2t_3 - \beta
\]

(16)

and

\[
d(y, R_4) \leq |G - y| - |S| - |R_2| - |R_3| - |N(u, R_4)|
= n - 1 - 2k - t_2 - 2t_3 - \alpha.
\]

(17)

One may verify that

\[
d(x) + d(y) + d(u) + d(v) \leq
\]

\[
d(\{u, v\}, S)
+ d(\{u, v\}, R_3)
+ d(\{x, y\}, S_2 \cup R_2)
+ d(\{x, y\}, S_3 \cup S_4)
+ d(x, R_4)
\]

Using (11), (12), (13), (14), (15), (16) and (17), we see that

\[
d(x) + d(y) + d(u) + d(v) \leq
\]

\[
4k - 4
+ 2t_3
+ 6t_2
+ 2(t_3 + t_4)
+ 4(t_1 + t_3)
+ n - 1 - 2k - t_2 - 2t_3 - \beta
\]

Simplifying this expression, and using the fact that \(t_1 + t_2 + t_3 + t_4 = k\), we see that

\[
d(x) + d(y) + d(u) + d(v) \leq 2n - 6 + 4k - 2t_4.
\]

Since \(uy, vx \notin E(G)\), our degree sum condition (6) shows on the other hand that

\[
d(x) + d(y) + d(u) + d(v) \geq 2n + 4k - 6.
\]
This shows that we must have $t_4 = 0$, a contradiction.

Case 2: Assume $\alpha = 0$. First we show that $\beta \geq 3$. Indeed, $uv \notin E(G)$, so using (12) we get

$$d(u, R_4) + d(v, R_4) \geq n + 2k - 3 - d(\{u, v\}, S)$$
$$- |N(\{u, v\}, R_2)| - d(\{u, v\}, R_3)$$
$$\geq n + 2k - 3 - (4k - 4) - 2t_2 - 2t_3$$
$$= n - 2k + 1 - 2(t_2 + t_3),$$

and since $t_4 \geq 1$, $t_2 + t_3 \leq k - 1$, hence using the fact that $n \geq 4k$ and $d(u, R_4) = 0$, we have

$$\beta = d(v, R_4) \geq n - 4k + 3 \geq 3.$$

Let y be a vertex of $N(v, R_4)$. Note that

$$d(u, R_2) + d(y, S_2) \leq 2t_2$$

(18)
since otherwise, for some $t_1 + 1 \leq i \leq t_1 + t_2$ we would have $d(u, P_i \cap R) + d(y, P_i \in S) \geq 3$, implying that $ya_i, yb_i, uw \in E(G)$ where w is the middle vertex of P_i. But then replacing P_i with the path $a_i yb_i$, we obtain a system of paths satisfying conditions (7) and (8), but contradicting (9) since u is adjacent to w and v is still adjacent to at least 2 vertices of $G - S - V(\mathcal{P})$. Further,

$$d(u, R_3) + d(y, R_3 \cup S_3) \geq 4t_3.$$

(19)

Indeed, if this were not the case, for some $t_1 + t_2 + 1 \leq i \leq t_1 + t_2 + t_3$, we would have $d(u, P_i \cap R) + d(y, P_i \geq 5$. Since we cannot have both $ya_i \in E(G)$ and $yb_i \in E(G)$ (or (8) would be contradicted), this shows that letting $P_i = a_i w zb_i$, we have $yw, yz, uw, uz \in E(G)$, and without loss of generality, $yb_i \in E(G)$. Replacing P_i by the path $a_i wyb_i$ one may verify that we again contradict (9). Finally,

$$d(y, S_4) \leq t_4$$

(20)
or there would be a $t_1 + t_2 + t_3 + 1 \leq i \leq k$ with $xa_i, xb_i \in E(G)$, hence a path $a_i xb_i$ contradicting (7).
Now
\[d(u) + d(y) = d(u, S) + d(u, R_2) + d(y, S_2) + d(u, R_4) + d(u, R_3) + d(y, S_3 \cup R_3) + d(u, R_2 \cup R_4) + d(y, S_1) + d(y, S_4) \]

Using (10), (18), (?, ?), (17), we find that
\[d(u) + d(v) \leq (2k - 2) + 0 + 2t_2 + 4t_3 + (n - 1 - 2k - 2t_3) + 2t_1 + t_4 \]
\[= n - 3 + 2(t_1 + t_2 + t_3 + t_4) - t_4 \]
\[= n + 2k - 3 - t_4 \]
\[< n + 2k - 3, \]
since \(t_1 + t_2 + t_3 + t_4 = k \) and \(t_4 \geq 1 \). Yet since \(uy \notin E(G) \) this contradicts (6).

Hence \(t_4 = 0 \), so \(G \) is \(k \)-linked and since we required all paths of \(P \) to be of order smaller or equal to 4, we see that, in fact, \(\text{ldiam}(G) \leq 3 \).

Claim 2 Let \(G \) be a graph of order \(n \), \(k \) be a positive integer such that \(n \geq 4k \) and \(l \) be a positive integer with \(1 \leq l \leq k \). If \(\sigma_2(G) \geq n + 2k + l - 4 \) then \(\text{ldiam}_k(G) \leq 3k - l \).

Proof: Let \(G \) be a graph satisfying the conditions of the Claim. Let \(S, R, A, B, P, t_1, t_2, t_3 \) and \(t_4 \) be defined as in the proof of Claim 1. The said Claim shows that \(t_4 = 0 \), so that \(k = t_1 + t_2 + t_3 \). If \(t_1 + t_2 \geq l \), then
\[|P| = 2t_1 + 3t_2 + 4t_3 \]
\[= 4(t_1 + t_2 + t_3) - (t_1 + t_2) - t_2 \]
\[\leq 4k - l, \]
which implies \(\text{ldiam}_k(G) = |P| - k \leq 3k - l \), which is to be proven. Hence we assume
\[t_2 + t_3 \leq l - 1. \] (21)

Now for every \(t_1 + t_2 + 1 \leq i \leq k \) we have \(a_i b_i \notin E(G) \), so
\[d(a_i, b_i; P - S) \geq \sigma_2(G) - 2(2k - 2) \]
\[\geq n - 2k + l \]
\[= |G - S| + l, \]
implying that there are at least \(l \) vertices in \(G \) which are adjacent to both \(a_i \) and \(b_i \). The minimality of \(|\mathcal{P}|\) implies that none of these vertices may be in \(P_i \) or in \(G - \mathcal{P} \) since otherwise a \((a_i, b_i)\)-path of order four could be replaced by a path of order three. Also, by (21), at least one of these vertices must be in \(P_j - \{a_j, b_j\} \), where \(t_1 + t_2 + 1 \leq j \leq k \) and \(j \neq i \).

Let \(D \) be a digraph of order \(t_3 \) obtained by taking \(P_{t_1+t_2+1}, \ldots, P_k \) to correspond to the vertices, and where there is an edge from \(P_i \) to \(P_j \) \((i \neq j)\) if and only if there is a vertex \(w \) in \(P_j - \{a_j, b_j\} \) such that \(a_iw, bw \in E(G) \).

One may easily verify that if \(D \) had a directed cycle then one could replace every path \(P_i \) of order 4 corresponding to the vertices of this directed cycle with an \((a_i, b_i)\)-path of order 3, hence contradicting the minimality of \(|\mathcal{P}|\). Yet the previous paragraph implies that every vertex of \(D \) has at least one edge coming out of it, and this can be seen to imply the existence of a directed cycle in \(D \) (note that we allow this cycle to be of order two).

Indeed, take the last vertex \(z \) of a directed path \(Z \) of \(D \) of maximal order. Since \(z \) must be adjacent to a vertex \(z' \) of \(D \), and that \(z' \) cannot be in \(D - Z \), or the maximality of \(Z \) would be contradicted, we see that \(z' \) must be in \(Z \), creating a directed cycle in \(D \), and hence completing the proof of our Theorem. \(\square \)

Claim 3 The lower bounds on \(\sigma_2(G) \) in Claim 1 and Claim 2 are minimal.

Proof: To see that the lower bound on \(\sigma_2(G) \) in Claim 4 is the smallest possible yielding \(\text{ldiam}_k(G) < \infty \), we construct a graph \(G(k) \) verifying \(\sigma_2(G) = n + 2k - 4 \) and which is not \(k \)-linked. Indeed, take the complete graph \(K_{n-k} \), \(B \) and \(C \) be any two disjoint subgraphs of \(K_{n-k} \) of order \(k \) and \(k-1 \) respectively (note that \(n \) is assumed to be greater or equal to \(4k \)). The vertices of \(B \) will be labeled \(b_1, \ldots, b_k \). Let \(A \) be a complete graph on \(k \) vertices having vertices labeled \(a_1, \ldots, a_k \). Consider the graph

\[
G(k) = (A + K_{n-k}) - E(A, K_{n-k} - (B \cup C)) - \{a_1b_1, \ldots, a_kb_k\}.
\]

of order \(n \). The only non-adjacencies are between \(A \) and \(K_{n-k} \), yet if we take any vertex \(a \in V(A) \) and \(z \in V(K_{n-k}) \) we find that

\[
d(a) + d(z) \geq d(a, A) + d(a, B) + d(a, C) + d(z, K_{n-k}) \geq (k - 1) + (k - 1) + (k - 1) + n - k - 1 = n + 2k - 4,
\]

13
and if we take \(z \) to be in \(V(K_{n-k} - B - C) \), we have equality. This shows that \(\sigma_2(G) = n + 2k - 4 \). Yet since the only edges of \(E(A, B) \) that could be used for our linking paths are the missing \(a_ib_i \) edges, any path linking the vertices of \(A \) to those of \(B \) must use at least one vertex of \(C \). Since \(|C| = k - 1 \), there is no \((A, B)\)-linkage in \(G(k) \).

The condition on \(\sigma_2(G) \) of Claim 2 can be seen to be the best possible. Consider for example the graph

\[
G(k, l) = (A + K_{n-k} - E(B, C) - E(A, K_{n-3k} - B - C - L) - \{a_1b_1, \ldots, a_kb_k\},
\]

where \(A \) is a complete graph of order \(k \), disjoint from \(K_{n-k} \), and whose vertices are labeled \(a_1, \ldots, a_k \), \(B \) is a subgraph of \(K_n - k \) with vertices labeled \(b_1, \ldots, b_k \), and \(C \) and \(L \) are two disjoint subgraphs of \(K_{n-k} - B \) or order \(k \) and \(l \) respectively.

Since we removed the edges \(a_1b_1, \ldots, a_kb_k \), the edges of \(E_{G(k,l)}(A, B) \) cannot be used in a \((A, B)\)-linkage \(P \), and all paths of \(P \) must be of order at least 3. The only edges left from \(A \) to the rest of the graph \(G(k, l) \) are those of \(E(A, C \cup L) \). Yet since we removed all the edges between \(B \) and \(C \), the only paths of \(|P| \) that have order 3 must go through \(L \). Since \(|L| = l \), there can be no more than \(l \) such paths, thus \(\Sigma_{P \in \mathcal{P}} |P| \geq 4(k - l) + 3l = 4k - l \), implying that \(\text{ldiam}_k(G(k, l)) \geq 3k - l \).

Yet let \(u \) and \(v \) be any two non-adjacent vertices of \(G(k, l) \). If \(u \in B \) and \(v \in C \), then

\[
d(u) + d(v) = d(u, G - A - C) + d(u, A) + d(v, G - A - C) + d(v, A) \\
= (n - k - k - 1) + (k - 1) + (n - k - k - 1) + k \\
= 2n - 2k - 3 \\
\geq n + 2k + l - 4
\]
since \(n \geq 4k + l + 1 \). If \(u \in A \) and \(v \in B \) then

\[
d(u) + d(v) = d(u, A) + d(u, B) + d(u, C \cup L) + d(v, G - A - C) + d(v, A) \\
= (k - 1) + (k - 1) + (k + l) + (n - k - k - 1) + (k - 1) \\
= n + 2k + l - 4.
\]

These are without loss of generality, the only possibilities for \(u \) and \(v \), thus \(\sigma_2(G(k, l)) = n + 2k + l - 4 \).

The tightness of Claim 2 is then illustrated by the graph \(G(k, l-1) \) which verifies \(\sigma_2(G(k, l-1)) = n + 2k + l - 5 \) yet \(\text{ldiam}_k(G(k, l)) \geq 3k - l \). \(\square \)
This concludes the proof of Theorem 4 □.

Before we prove the extension theorem, we will prove the following useful lemma:

Theorems 5 and 6 are a direct consequence of Theorems 3 and 4 using the following Lemma:

The Extension Lemma:

Proof of The Extension Lemma: Let \(G \) satisfy the conditions of the Lemma and \((A, B) \in V_k(G) \) be such that there is an \((A, B)\)-linkage in \(G \). Let \(A = \{a_1, \ldots, a_k\} \), \(B = \{b_1, \ldots, b_k\} \) and \(\mathcal{P} = \{P_1, \ldots, P_k\} \) be an \((A, B)\)-linkage of maximal order. Let \(q = |Q| \), \(p = |P| \), and for every \(1 \leq i \leq k \), let \(p_i = |P_i| \). Let \(P = (\mathcal{P})_G \) and \(Q = G - P \).

Note that for any \(u \in Q \) and \(P_i \in \mathcal{P} \), if \(z \in N(u, P_i) \), then \(z \notin N(u, P_i) \) or replacing \(P_i \) with \([a_i, z]_{P_i} \cup zu \cup uz^+ \cup [z^+, b_i]_{P_i} \) we would contradict the maximality of \(\mathcal{P} \). This implies that \(d(u, P_i) \leq \left\lfloor \frac{p + k}{2} \right\rfloor \), thus

\[
d(u, P) \leq \left\lfloor \frac{p + k}{2} \right\rfloor,
\]

which in turn yields that for any two vertices \(u \) and \(v \) of \(Q \),

\[
d(w, Q) + d(w', Q) \geq n + k - (p + k) = q,
\]

showing that \(Q \) is connected, so there is a \((u, v)\)-path in \(Q \), implying that in fact

\[
d(u, P) + d(v, P) \leq \left\lfloor \frac{p + k}{2} \right\rfloor, \tag{23}
\]

or again, the maximality of \(\mathcal{P} \) would be contradicted.

The fact that \(\sigma_2(G) \geq n + (k + 2) - 2 \) shows by Theorem 3 that \(G \) is \((k + 2)\)-connected. Thus \(|N(Q, P)| \geq k + 2 \), so by the pigeon-hole principal, some member of \(\mathcal{P} \), without loss of generality \(P_1 \), verifies \(|N(Q, P_1)| \geq 2 \).

Let \(x \) and \(y \) be such that \(\{x, y\} \in N(Q, P_1) \), \(y \) appears after \(x \) in the \(P_1 \), and \([x, y]_{P_1}\) is minimal. Let \(u, v \in V(Q) \) be such that \(ux, vy \in E(G) \) and \(R = [x^+, y^-]_{P_1} \). We cannot have \(y = x^+ \) or the maximality of \(\mathcal{P} \) would be contradicted, so \(R \neq \emptyset \). Let \(r = |R| \), \(P'_1 = [a_1, x]_{P_1} \) and \(P''_1 = [y, b_1]_{P_1} \).

By the minimality of \([x, y]_{P_1} \), \(d(S, R) = 0 \), so the inequality (23), when applied to \(\mathcal{P}' \), shows that for all \(w \in V(Q) \),

\[
d(w, \mathcal{P}) = d(w, \mathcal{P}') \leq \frac{p - r + k + 1}{2}. \tag{24}
\]
Since for all \(w \in V(Q) \) and \(z \in V(R) \), \(wz \notin E(G) \), our degree condition yields
\[
d(z, \mathcal{P}') \geq \sigma_2(G) - d(w, Q) - d(w, \mathcal{P}') - d(z, R)
\]
\[
\geq (n + k) - (q - 1) - \frac{p - r + k + 1}{2} - (r - 1)
\]
\[
= \frac{p - r + k + 3}{2}.
\] (25)

If \(|R| = 1 \), since
\[
d(x^+, \mathcal{P}') \geq \frac{p - r + k + 3}{2} > \frac{p - r + k + 1}{2},
\]
there is a path \(P \in \mathcal{P}' \) and a vertex \(z \in V(P) \) such that \(x^+z, x^+z^+ \in E(G) \), so we can insert \(x^+ \) into \(P \), and obtain a larger \((A, B)\)-linkage than \(\mathcal{P} \).

If \(|R| = 2 \) then \(x^+ \neq y^- \), and (25) shows that
\[
d(x^+, \mathcal{P}') + d(y^-, \mathcal{P}') \geq p - r + k + 3.
\]
This implies that for some \(Z \in \mathcal{P}' \),
\[
d(x^+, P - R) + d(y^-, P - R) \geq |Z| + 1,
\] (26)

Note that we can choose \(Z \) to be of order at least 2 since for \(2 \leq i \leq k \), \(|P_i| \geq 2 \), and if both \(P_1' \) and \(P_2'' \) have order 1, we still have
\[
d(x^+, P - P_1) + d(y^-, P - P_1) \geq |P - P_1| + 1.
\]
This shows that for some vertex \(z \in Z \) such that \(zx^+, z^+y^- \in E(G) \) or \(z^+x^+, zy^- \in E(G) \). Let us assume we are in the later case, since the other case is similar. If \(Z = P_i \) for some \(2 \leq i \leq k \), replacing the path \(P_1 \) of \(\mathcal{P} \) with
\[
[a_1, x]_{P_1} \cup xu \cup S \cup vy \cup [y, b_1],
\]
and \(P_i \) with
\[
[a_i, z]_{P_i} \cup zy^- \cup R \cup x^+z^+ \cup [z^+, b_i]_{P_i},
\]
we contradict the maximality of \(\mathcal{P} \). If \(Z = P_1' \), we can replace the path \(P_1 \) of \(\mathcal{P} \) with
\[
[a_1, z]_{P_1} \cup R \cup x^+y^+ \cup [y^+, x]_{P_1} \cup xu \cup S \cup vy \cup [y, b_1]_{P_1},
\]
we again have a contradiction. The case $Z = P''_1$ is similar to the previous one.

To see that the condition $\sigma_2(G) \geq n + k - 1$ isn’t even enough to extend some (A, B)-systems to a Hamiltonian (A, B)-system, consider the graph $G_{n,k} = X + Y$ where $n \geq 4k$, X is an empty graph (no edges) on $\frac{n-k+1}{2}$ vertices and Y is a complete graph on $\frac{n+k-1}{2}$ vertices. Note that $G_{n,k}$ can be seen to be obtained by taking the complete graph K_n and removing all vertices of a subgraph X on $\frac{n-k+1}{2}$ vertices of $V(K_n)$.

One will verify that $\sigma_2(G_{n,k}) = n + k - 1$ yet if A and B are two disjoint k-sets of vertices of X, there can be no (A, B)-system in $G_{n,k}$ covering all the vertices of the graph.

References
