One or Two Disjoint Circuits Cover Independent Edges

Lovász–Woodall Conjecture

Ken-ichi Kawarabayashi

Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; and Department of Mathematics, 1326 Stevenson Center, Vanderbilt University, Nashville, Tennessee 37240-0001
E-mail: k_keniti@comb.math.keio.ac.jp, k_keniti@math.Vanderbilt.edu

Received April 12, 1999; published online August 17, 2001

In this paper, we prove the following theorem: Let \(L \) be a set of \(k \) independent edges in a \(k \)-connected graph \(G \). If \(k \) is even or \(G - L \) is connected, then there exist one or two disjoint circuits containing all the edges in \(L \). This theorem is the first step in the proof of the conjecture of L. Lovász (1974, Period. Math. Hungar., 82) and D. R. Woodall (1977, J. Combin. Theory Ser. B 22, 274–278). In addition, we give the outline of the proof of the conjecture and refer to the forthcoming papers.

Key Words: circuit; independent edges; Lovász conjecture.

1. INTRODUCTION

In this paper, all graphs considered are finite, undirected, and without loops or multiple edges. \(V(G) \) denotes the set of vertices of a given graph \(G \). A set of edges are disjoint, if no two of them have a vertex in common. A set of edges are independent edges, if any two of them are disjoint. In this paper, circuit \(C \) means a 2-regular connected subgraph. We often use the word “disjoint” as “vertex-disjoint.” Let \(k \)-cutset be a cutset consisting of \(k \) vertices. For a graph theoretic notation not defined here, we refer the reader to [1].

A well-known theorem of Dirac [3] states that given any \(k \) vertices in a \(k \)-connected graph \(G \), then \(G \) has a circuit containing all of them. He also proved that if \(e \) and \(f \) are two edges of \(k \)-connected graph, and if \(S \) is a set of \(k - 2 \) vertices of \(G \), then \(G \) contains a cycle which includes \(e, f \) and all the vertices in \(S \). Since then, many papers on this theme can be found in the literature: cf. Bondy and Lovász [2], Holton and Plummer [6], Holton et al. [7], Kaneko and Saito [8], and the author [9].
If \(L \) is a set of \(k \) independent edges in a \(k \)-connected graph \(G \) with \(k \) being odd, such that \(G - L \) is disconnected, then clearly \(G \) has no circuits containing all the edges of \(L \).

Considering this situation, Lovász [14] and Woodall [18] independently conjectured the following:

Conjecture 1. If \(k \) is even or \(G - L \) is connected, then \(G \) has a circuit containing all the edges of \(L \).

Conjecture 1 is well known to be true for \(k \leq 5 \). For \(k \leq 2 \), it is easily shown by using Menger’s Theorem. Lovász [15] proved the case of \(k = 3 \). Erdős and Győri [4] and Lomonosov [13] independently proved the case of \(k = 4 \). Sanders [16] proved the case of \(k = 5 \). Partial results concerning Conjecture 1 were due to Woodall [18] and Thomassen [17].

The final general result is proved by Häggkvist and Thomassen [5].

Theorem 1. If \(L \) is a set of \(k \) independent edges in a \((k+1)\)-connected graph \(G \), then there is a circuit containing all the edges in \(L \).

Note that Theorem 1 implies the conjecture of Berge [1, p. 214].

The purpose of this paper is to prove the following theorem.

Theorem 2. Let \(L \) be a set of \(k \) independent edges in a \(k \)-connected graph \(G \). If \(k \) is even or \(G - L \) is connected, then there exist one or two disjoint circuits containing all the edges in \(L \).

Note that the condition that \(k \) is even or \(G - L \) is connected is necessary as the same example of Conjecture 1 shows.

The proof involves a refinement of Woodall’s Hopping Lemma, which was introduced in [19] and applied in [5, 18, 19].

In Section 3, we outline the proof of Theorem 2 since this paper is long and technical.

Meanwhile, we prove Conjecture 1. In Section 5, we refer to our approach to Conjecture 1 and the forthcoming papers.

2. Preparation for the Proof of Theorem 2

Since the cases \(k \leq 3 \) were already proved, hence we may suppose \(k \geq 4 \). Assume that there do not exist one or two disjoint circuits containing all the edges in \(L \).

First of all, we prove the following lemma.

Lemma 1. There exists a path \(P \) which contains all the edges in \(L \).
Proof. Let e be an edge in L. By using Theorem 1, we can get the fact that there exists a circuit C containing $k-1$ edges in L. So we may assume that C contains all the edges in $L\setminus e$. If C contains e, then there exists a circuit containing all the edges in L. So, suppose that C does not contain e.

Let g and h be the vertices of e. If $|V(e)\cap V(C)|=0$, since $k\geq 4$, there exists a path P' connecting from g to C. Then we can easily get the path containing all the edges in L by using e, P', and C.

If $|V(e)\cap V(C)|=1$, say $g\in V(C)$, then we can easily get the path containing all the edges in L. So, Lemma 1 follows.

Let P be a path such that P contains all the edges in L and endvertices of P are vertices that belong to $V(L)$. $P\setminus L$ consists of $k-1$ paths P_1, \ldots, P_{k-1} and two endvertices of P. Let the vertices in order along P_i be

$$x_{i,1}, x_{i,2}, \ldots, x_{i,m_i}$$

($i=1, \ldots, k-1$), where the edges $(x_{i,m_i}, x_{i+1,1})$ are edges in L. Let a be the endvertex of P adjacent to $x_{i,1}$ in P and also, let b be the endvertex of P adjacent to $x_{k-1,m_{k-1}}$ in P.

Here is an extension of the definition of Woodall [18]. If $X\subseteq V(P)$ and if $X\cap P_i \neq \emptyset$, ($i=1, \ldots, k-1$), let $\inf_i(X)$ and $\sup_i(X)$ denote the following.

$$\inf_i(X) := x_{i,p}, \quad \text{where} \quad p := \inf\{q: x_{i,q} \in X\}$$

and

$$\sup_i(X) := x_{i,p}, \quad \text{where} \quad p := \sup\{q: x_{i,q} \in X\}.$$

For any $X\subseteq V(P)$, let $Fr_i(X)$, $Int_i(X)$ and $Cl_i(X)$ denote the following, respectively,

$$Fr_i(X) := \emptyset, \quad \text{if} \quad X\cap P_i = \emptyset$$

$$\{\inf_i(X), \sup_i(X)\} \quad \text{otherwise}$$

$$Int_i(X) := \emptyset, \quad \text{if} \quad |Fr_i(X)| \leq 1$$

$$x_{i,p}: \inf_i(X) < p < \sup_i(X) \quad \text{otherwise}$$

and

$$Cl_i(X) := Fr_i(X) \cup Int_i(X).$$
Let \(Fr(X), \) \(Int(X), \) and \(Cl(X) \) denote \(\bigcup_{i=1}^{k-1} Fr_i(X), \bigcup_{i=1}^{k-1} Int_i(X), \) and \(\bigcup_{i=1}^{k-1} Cl_i(X) \), respectively.

If \(H \) is a subgraph of \(G \) and if \(x \) and \(y \in V(G) \), \(x \ast y \) will always denote a path connecting \(x \) to \(y \) with \((x \ast y) \cap P \subseteq \{x, y\} \). If \(X \subseteq V(G) \) and \(H \) is a subgraph of \(G \), let

\[
I(X, H) := \{ y \in V(P) : \text{there exists an } x \ast y \text{ in } G \setminus H, \text{ for some } x \in X \}.
\]

To the extension of Woodall’s definition [18], we define the sequence \(A_0 \leq A_1 \leq \cdots \) and the sequence \(B_0 \leq B_1 \leq \cdots \) of subsets of \(V(P) \), as

\[
A_0 := I(\{a\}, \{a\})
\]

\[
B_0 := I(\{b\}, \{b\})
\]

and, for any \(x, y \geq 1 \),

\[
A_x := A_{x-1} \cup I(\text{Int}(A_{x-1}), \{a\})
\]

\[
B_y := B_{y-1} \cup I(\text{Int}(B_{y-1}), \{b\}).
\]

\(A_{-1} \) and \(B_{-1} \) will be interpreted as \(\emptyset \). Note that there does not exist a path \(a \ast b \), for otherwise, there exists a circuit which contains all the edges in \(L \), which is contrary to the hypothesis.

Finally, if \(x \) and \(y \) are vertices occurring in order in a path \(P \), \(x, P, y \) and \(y, P, x \) will denote, respectively, the segment of \(P \) from \(x \) to \(y \), and the reverse segment from \(y \) to \(x \), and also if \(x \) and \(y \) are vertices occurring in order in a circuit \(C \), \(x, C, y \) and \(y, C, x \) will denote, respectively, the segment of \(C \) from \(x \) to \(y \), and the reverse segment from \(y \) to \(x \).

3. Outline of the Proof of Theorem 2

In this section, we give the outline of our proof. By Lemma 1, there exists a path \(P \) connecting \(a \) to \(b \). First, we prove the following;

(1) There do not exist distinct vertices \(a_x \) and \(b_y \) in \(P \), such that \(a_x \in A_i \) and \(b_y \in B_i \), for any \(x, y \geq 0 \) and for \(i = 1, \ldots, k-1 \).

Statement (1) is proved in Lemma 2. By (1), we have the following facts;

1. For any \(i \) with \(i = 1, \ldots, k-1 \), \(|Fr_i(A)| + |Fr_i(B)| \leq 2 \). Hence \(|Fr(A)| + |Fr(B)| \leq 2k - 2 \).
2. Since both \(\{x_{1,1}\} \cup Fr(A) \) and \(\{x_{k-1,m_k}\} \cup Fr(B) \) are cutsets, we can conclude that \(|Fr(A)| = |Fr(B)| = k - 1 \).
Next, we prove the following;

\(2\) \(A \cap B = \emptyset\).

Statement (2) is proved in Claim 2. By (1) and (2), since \(\frac{k-1}{2}\) is not an integer when \(k\) is even, either \(|Fr(A)| < k - 1\) or \(|Fr(B)| < k - 1\). Hence we have the following;

(3) We may assume that \(k\) is odd.

Since \(G-L\) is connected, there exists a path \(P'\) connecting from \(P_r\) to \(P_r\), where \(i' < i''\) and either \(A \cap V(P_r) \neq \emptyset\) and \(B \cap V(P_r) \neq \emptyset\) or \(B \cap V(P_r) \neq \emptyset\) and \(A \cap V(P_r) \neq \emptyset\). We can prove the following;

(4) \(B \cap V(P_r) = \emptyset\) and \(A \cap V(P_r) = \emptyset\).

We choose a path \(P'\) such that \(i'' - i'\) is as large as possible. Then we prove the following;

(5) \(i'' - i' \geq 2\).

Finally, we prove Claim 4, which immediately implies our theorem.

4. PROOF OF THEOREM 2

We prove the following lemma.

Lemma 2. There do not exist distinct vertices \(a_x\) and \(b_y\) in \(P_i\) such that \(a_x \in A_x\) and \(b_y \in B_y\) for any \(x, y \geq 0\) and for \(i = 1, \ldots, k-1\).

Proof. If there exist such two distinct vertices \(a_x\) and \(b_y\) in \(P_i\), choosing \(x\) and \(y\) minimal, and considering two paths connecting \(a\) to \(b_y\) and \(a\) to \(b\), or \(a\) to \(a_x\) and \(b\) to \(b_y\) along one side of \(P_i\), we can consider the following statement which is extension of Woodall’s proof [18]:

\(X(x, y)\) There exist two disjoint paths \(R_{x, y}\) and \(R'_{x, y}\) such that one starts at \(a_x\) in \(A_x\) and terminates at \(b\) in \(B_y\) and the other starts at \(a\) and terminates at \(b\), or one starts at \(a_x\) in \(A_x\) and terminates at \(b\) and the other starts at \(a\) and terminates at \(b_y\), or one starts at \(a\) and terminates at \(a_x\) in \(A_x\) and the other starts at \(b\) and terminates at \(b_y\) in \(B_y\), such that the conditions (S1)–(S3) below are satisfied.

(S1) \(R_{x, y} \cup R'_{x, y}\) includes all the edges in \(L\) and all the vertices in \(\text{Int}(A_{x-1})\) and in \(\text{Int}(B_{y-1})\).
The only vertices of $R'_{x,y} \cup R_{x,y}$ not in P occur in segment of $R_{x,y} \setminus L$ and $R'_{x,y} \setminus L$ of the form $w, w \ast r, r$, where w and r are both in P but not both in A_s or in B_s.

(S$_s$) For each of the paths $R_{x,y} \setminus L$ and $R'_{x,y} \setminus L$, say Q_x, and each $x' \leq x-1$ (or $y' \leq y-1$), if there is a vertex q such that $a_x \ast q \cap (R_{x,y} \cup R'_{x,y}) \subseteq \{a_x, q\}$ (or $b_x \ast q \cap (R_{x,y} \cup R'_{x,y}) \subseteq \{b_x, q\}$), where $q \in Q_x \cap \text{Int}(A_s)$ (or $q \in Q_x \cap \text{Int}(B_s)$), then there are two vertices of $\text{Fr}(A_s)$ (or $\text{Fr}(B_s)$) occurring before and after q along Q_x, and each of the vertices between them along Q_x is in $\text{Int}(A_s)$ (or in $\text{Int}(B_s)$).

To prove Lemma 2, it is sufficient to prove the following claim.

CLAIM 1. If $X(x, y)$ holds, then G has one or two disjoint circuits containing all the edges in L.

Proof. We prove Claim 1 by the induction on $x + y$. Suppose $x + y = 0$. Let T_a be a path from a to a_0, and let T_b be a path from b to b_0. If T_a and T_b are disjoint, by the definition of the set A_0 and B_0, we can get the result that G has one circuit that contains all the edges in L or G has two disjoint circuits that contain all the edges in L.

So we can suppose that $T_a \cap T_b \neq \emptyset$. But in this case, since there exists a path $a \ast b$, the result easily follows.

Suppose $x + y > 0$. Without loss of generality, we may assume $x > 0$. If $a_x \in A_{x-1}$, then, the result follows by the induction hypothesis. So, we may assume $a_x \in A_s \setminus A_{x-1}$. Let Q_x be the path $R_{x,y} \setminus L$ or $R_{x',y} \setminus L$ such that Q_x contains a_x. Then, we can choose a path $a_x \ast y_{x-1}$ connecting a_x to y_{x-1}, where $y_{x-1} \in \text{Int}(A_{x-1})$. This path does not intersect any segment $w, w \ast r, r$ in $R_{x,y}$ or in $R'_{x,y}$ with w and r in P except for its end vertices a_x and y_{x-1}.

For otherwise, both w and r are in A_s, which is contrary to (S$_s$). By the condition (S$_s$), there exists a vertex $a_{x-1} \in A_{x-1}$ which is preceding y_{x-1} such that the segment $a_{x-1}, R_{x,y}, y_{x-1}$ or $a_{x-1}, R'_{x,y}, y_{x-1}$ does not contain edges in L. Now we choose a vertex a'_x which is the last vertex before y_{x-1} along $R_{x,y}$ (if $y_{x-1} \in R_{x,y}$) or along $R'_{x,y}$ (if $y_{x-1} \in R'_{x,y}$) and a'_x is in $\text{Fr}(A_s)$ for any $x' \leq x - 1$, and choose x' minimal so that $a'_x \notin \text{Cl}(A_{x-1})$. Also, by the condition (S$_s$), there exists a vertex $a'_{x-1} \in A_{x-1}$ which is succeeding y_{x-1} such that the segment $y_{x-1}, R_{x,y}, a'_{x-1}$ or $y_{x-1}, R'_{x,y}, a'_{x-1}$ does not contain edges in L. Now we choose a vertex a'_x which is the last vertex after y_{x-1} along $R_{x,y}$ (if $y_{x-1} \in R_{x,y}$) or along $R'_{x,y}$ (if $y_{x-1} \in R'_{x,y}$) and a'_x is in $\text{Fr}(A_s)$ for any $x' \leq x - 1$, and choose x' minimal so that $a'_x \notin \text{Cl}(A_{x-1})$. We will write a_x instead of a'_x since it may not be confusing for readers.

Then there does not exist a vertex that is in $\text{Int}(A_{x-1})$ in the segments both $a_x, R_{x,y}, y_{x-1}$ and $y_{x-1}, R_{x,y}, a_x$ (if $y_{x-1} \in R_{x,y}$), or both $a_x, R'_{x,y}, y_{x-1}$, and $y_{x-1}, R'_{x,y}, a_x$ (if $y_{x-1} \in R'_{x,y}$).
follows by the induction hypothesis. Hence Claim 1 follows.

otherwise, there must exist some P_i of P which contains distinct vertices r, w such that $r \in A_{x−1}$ and $w \in B_{y−1}$. But, in this case, choosing the paths connecting a to r along P and b to w along P, or a to w along P and b to r along P, there exist two disjoint paths $R'_{x−1,y−1}$ and $R'_{x−1,y−1}$, and hence, the result follows by the induction hypothesis.

We consider three cases for $R_{x,y}$ and $R'_{x,y}$.

Case 1. $R_{x,y}$ is a path which starts at a_x in A_x and terminates at b_y in B_y. $R'_{x,y}$ is a path which starts at a and terminates at b.

In this case, if $y_{x−1} \in R_{x,y}$, then we can replace the path $R'_{x,y}$ such that $a_x, R_{x−1,y}, a_{x−1}, y_{x−1}, R_{y−1}, b$. And $R'_{x,y}$ is $R'_{x,y}$. These two paths satisfy the case of $x'+y$. So, the result follows by the induction hypothesis.

If $y_{x−1} \in R'_{x,y}$, then we can replace the path $R'_{x,y}$ such that $b, R_{x−1,y}, y_{x−1}, R_{y−1}, a_x, a_{x−1}, R'_{x,y}, b$. And also we can replace the path $R'_{x,y}$ such that $a, R'_{x,y}, a_{x−1}, y_{x−1}, R_{{x−1},y}, b$. These two paths satisfy the case of $x'+y$. So, the result follows by the induction hypothesis.

Case 2. $R_{x,y}$ is a path which starts at a_x in A_x and terminates at b and $R'_{x,y}$ is a path which starts at a and terminates at b_y in B_y.

In this case, if $y_{x−1} \in R_{x,y}$, then we can replace the path $R'_{x,y}$ such that $a_x, R_{x−1}, y_{x−1}, R_{y−1}, b$. And $R'_{x,y}$ is $R'_{x,y}$. These two paths satisfy the case of $x'+y$. So, the result follows by the induction hypothesis.

If $y_{x−1} \in R'_{x,y}$, then we can replace the path $R'_{x,y}$ such that $b, R_{x−1}, a_x, a_{x−1}, y_{x−1}, R_{{x−1},y}, b$. And also we can replace the path $R'_{x,y}$ such that $a, R'_{x,y}, a_{x−1}, y_{x−1}, R_{{x−1},y}, b$). These two paths satisfy the case of $x'+y$. So, the result follows by the induction hypothesis.

Case 3. $R_{x,y}$ is a path which starts at a and terminates at a_x in A_x and $R'_{x,y}$ is a path which starts at b and terminates at b_y in B_y.

In this case, if $y_{x−1} \in R_{x,y}$, then we can replace the path $R'_{x,y}$ such that $a, R_{x−1}, y_{x−1}, R_{y−1}, a_x, a_{x−1}, R'_{x,y}$. These two paths satisfy the case of $x'+y$. So, the result follows by the induction hypothesis.

If $y_{x−1} \in R'_{x,y}$, then we can replace the path $R'_{x,y}$ such that $a, R_{x−1}, a_x, a_{x−1}, y_{x−1}, R'_{x,y}, b$. And also we can replace the path $R'_{x,y}$ such that $a, R'_{x,y}, a_{x−1}, y_{x−1}, R_{{x−1},y}, b$). These two paths satisfy the case of $x'+y$. So, the result follows by the induction hypothesis. Hence Claim 1 follows.

Consequently, Lemma 2 follows.

We shall remark the proof of Claim 1. If $R_{x,y}$ and $R'_{x,y}$ satisfy either Case 1 or Case 2, by using the argument in the proof of Claim 1, we know
that we can get $R_{x', j}$ and $R'_{x', j}$ which also satisfy either Case 1 or Case 2. This will be used in the remaining part of our proof, in particular, in the proof of Claim 4.

Now we can suppose that there are no two distinct vertices a_x and b_y such that $a_x \in A_x$ and $b_y \in B_y$ in any segments of P_i.

Since $V(P)$ is finite, the sequence of sets $A_0 \subseteq A_1 \subseteq \cdots$ and the sequence $B_0 \subseteq B_1 \subseteq \cdots$ must be constant from some point onwards. Let A and B be the final sets.

We can easily get the fact that for each $i (1 \leq i \leq k-1)$,

$$|\text{Fr}_i(A)| + |\text{Fr}_i(B)| \leq 2$$

and since $P \setminus (L \cup \{a\} \cup \{b\})$ has $k-1$ segments, we have

$$|\text{Fr}(A)| + |\text{Fr}(B)| \leq 2k-2.$$

So,

$$|\text{Fr}(A)| \leq k-1$$

and

$$|\text{Fr}(B)| \leq k-1.$$

Hence we can get the following:

$$|\text{Fr}(A)| = |\text{Fr}(B)| = k-1.$$

For otherwise, $\text{Fr}(A) \cup \{x_{i-1}\}$ or $\text{Fr}(B) \cup \{x_{k-1,m-1}\}$ is a cutset separating a from b, and its cardinality is at most $k-1$, which is contrary to the connectivity of G.

Hence, we may assume, for any P_i,

$$|\text{Fr}_i(A)| + |\text{Fr}_i(B)| = 2.$$

We prove the following claim.

Claim 2. $A \cap B = \emptyset$.

Proof. Assume, to the contrary. Let $x_{i,j} \in A \cap B$. First, we prove the following subclaims.

Subclaim 1. If there exist two paths l_1 and l_2, and a cycle C_1, such that l_1 is connecting from a to b, and l_2 is connecting form a_x to b_y, or l_1 is connecting from a_x to b_y, and l_2 is connecting form a to b, and also $l_1 \cup l_2 \cup C_1$ satisfies the following conditions.
(S_1) \(I_1 \cup I_2 \cup C_1 \) includes all the edges in \(L \) and all the vertices in \(\text{Int}(A_{x-1}) \) and in \(\text{Int}(B_{y-1}) \).

(S_2) The only vertices of \(I_1 \cup I_2 \cup C_1 \) not in \(P \) occur in segment of \(I_1 \setminus L, I_2 \setminus L \) and \(C_1 \setminus L \) of the form \(w, w \ast r, r \), where \(w \) and \(r \) are both in \(P \) but not both in \(A_x \) or in \(B_y \).

(S_3) For each of the paths of \(I_1 \setminus L, I_2 \setminus L \) and \(C_1 \setminus L \), say \(Q_i \), and each \(x' \leq x-1 \) (or \(y' \leq y-1 \)), if there is a vertex \(q \) such that \(q \in Q_i \cap \text{Int}(A_x) \) (or \(q \in Q_i \cap \text{Int}(B_y) \)) then there are two vertices of \(\text{Fr}(A_x) \) (or \(\text{Fr}(B_y) \)) occurring before and after \(q \) along \(Q_i \), and each of the vertices between them along \(Q_i \) is in \(\text{Int}(A_x) \) (or in \(\text{Int}(B_y) \)).

Then there exist one or two disjoint circuits which contain all the edges in \(L \).

Proof. We prove Subclaim 1 by the induction on \(x+y \). Suppose that \(x+y=0 \).

Let \(T_y \) be a path from \(a \) to \(a_0 \) and let \(T_y \) be a path from \(b \) to \(b_0 \). If \(T_y \) and \(T_y \) are disjoint, by the definition of the set \(A_0 \) and \(B_0 \), we can get the result that \(G \) has two disjoint circuits that contain all the edges in \(L \).

So we can suppose that \(T_y \cap T_y \neq \emptyset \). But in this case, since there exists a path \(a \ast b \), the result easily follows.

Suppose \(x+y > 0 \). Without loss of generality, we may assume \(x > 0 \). If \(a_0 \in A_{x-1} \), then the result follows by the induction hypothesis. So, \(a_0 \in A_x \setminus A_{x-1} \). We can choose a path \(a_0 \ast y_{x-1} \) connecting \(a_0 \) to \(y_{x-1} \), where \(y_{x-1} \in \text{Int}(A_{x-1}) \). This path does not intersect any segment \(w, w \ast r, r \) in \(I_1 \) or in \(I_2 \) or in \(C_1 \) with \(w \) and \(r \) in \(P \) except for its end vertices \(a_0 \) and \(y_{x-1} \). For otherwise, both \(w \) and \(r \) are in \(A_x \), which is contrary to (S_2). By the condition (S_1), there exists a vertex \(a_{x-1} \in A_{x-1} \) which is preceding \(y_{x-1} \), such that the segment \(a_{x-1}, l_1, y_{x-1} \) or \(a_{x-1}, l_2, y_{x-1} \) or \(a_{x-1}, C_1, y_{x-1} \) does not contain edges in \(L \). We choose a vertex \(a_{x'} \) which is the last vertex before \(y_{x-1} \) along \(l_1 \) (if \(y_{x-1} \in l_1 \)) or along \(l_2 \) (if \(y_{x-1} \in l_2 \)) or along \(C_1 \) (if \(y_{x-1} \in C_1 \)) and \(a_{x'} \) is in \(\text{Fr}(A_x) \) for any \(x' \leq x-1 \), and choose \(x' \) minimal so that \(a_{x'} \notin \text{Cl}(A_{x-1}) \).

Also, by the condition (S_2), there exists a vertex \(a_{x-1}' \in A_{x-1} \) which is succeeding \(y_{x-1} \) such that the segment \(y_{x-1}, l_1, a_{x-1}', y_{x-1}, l_2, a_{x-1}', y_{x-1}, C_1, a_{x-1}' \) does not contain edges in \(L \). We choose a vertex \(a_{x'}' \) which is the last vertex after \(y_{x-1} \) along \(l_1 \) (if \(y_{x-1} \in l_1 \)) or along \(l_2 \) (if \(y_{x-1} \in l_2 \)) or along \(C_1 \) (if \(y_{x-1} \in C_1 \)) and \(a_{x'}' \) is in \(\text{Fr}(A_x) \) for any \(x' \leq x-1 \), and choose \(x' \) minimal so that \(a_{x'}' \notin \text{Cl}(A_{x-1}) \). We will write \(a_{x'} \) instead of \(a_{x'}' \) since it may not be confusing for readers.

Then there does not exist a vertex that is in \(\text{Int}(A_{x-1}) \) in the segments both \(a_{x'}, l_1, y_{x-1} \) and \(y_{x-1}, l_1, a_{x} \) (if \(y_{x-1} \in l_1 \)), or both \(a_{x'}, l_2, y_{x-1} \) and \(y_{x-1}, l_2, a_{x} \) (if \(y_{x-1} \in l_2 \)), or both \(a_{x'}, C_1, y_{x-1} \) and \(y_{x-1}, C_1, a_{x} \) (if
\(y_{x-1} \in C_1 \). We may assume that there are no vertices in \(\text{Int}(B_r) \) in the segments both \(a_x, l_1, y_{x-1} \) and \(y_{x-1}, l_1, a_x \) (if \(y_{x-1} \in l_1 \)), or both \(a_x, l_2, y_{x-1} \) and \(y_{x-1}, l_2, a_x \) (if \(y_{x-1} \in l_2 \)). For otherwise, there must exist some \(P_i \) of \(P \) which contains distinct vertices \(r \) and \(w \) such that \(r \in A_{x-1} \) and \(w \in B_{x-1} \). But, in this case, choosing the paths connecting \(a \) to \(r \) along \(P \) and \(b \) to \(w \) along \(P \), or \(a \) to \(w \) along \(P \) and \(b \) to \(r \) along \(P \), there exist \(l_1 \) and \(l_2 \) which satisfy Claim 1, and hence, the result follows. We consider two cases for \(l_1 \) and \(l_2 \).

Case 1. \(l_1 \) is connecting from \(a \) to \(b \) and \(l_2 \) is connection form \(a_x \) to \(b_y \).

In this case, if \(y_{x-1} \in l_2 \), then we can replace the path \(l_2 \) such that \(a_x, l_2, a_x \). \(\bar{a}_x, a_x \) and \(y_{x-1}, l_2, b, l_2 \). These two paths \(l_1 \) and \(l_2 \), and a cycle \(C_1 \) satisfy the case of \(x' + y \). So, the result follows by the induction hypothesis.

If \(y_{x-1} \in l_1 \), then we can replace the path \(l_2 \) such that \(a_x, l_2, y_{x-1}, y_{x-1}, a_x, l_2, b, l_2 \) is still \(l_1 \). These two paths \(l_1 \) and \(l_2 \), and a cycle \(C_1 \) satisfy the case of \(x' + y \). So, the result follows by the induction hypothesis.

If \(y_{x-1} \in C_1 \), then we can get two paths \(a_x, C_1, y_{x-1}, y_{x-1}, a_x, l_2, b \) and \(l_1 \), which satisfy Claim 1, and hence, the result follows.

Case 2. \(l_1 \) is connecting from \(a \) to \(b \) and \(l_2 \) is connecting form \(a_x \) to \(b_y \).

In this case, if \(y_{x-1} \in l_2 \), then we can replace the path \(l_2 \) such that \(a_x, l_2, a_x \). \(\bar{a}_x, a_x \) and \(y_{x-1}, l_2, b, l_2 \). These two paths \(l_1 \) and \(l_2 \), and a cycle \(C_1 \) satisfy the case of \(x' + y \). So, the result follows by the induction hypothesis.

If \(y_{x-1} \in l_1 \), then we can replace the path \(l_2 \) such that \(a_x, l_2, b \) and also we can replace the path \(l_1 \) such that \(a, l_1, y_{x-1}, y_{x-1}, a_x, l_2, b, l_1 \) is still \(l_1 \). These two paths \(l_1 \) and \(l_2 \), and a cycle \(C_1 \) satisfy the case of \(x' + y \). So, the result follows by the induction hypothesis.

If \(y_{x-1} \in C_1 \), then we can get two paths \(l_1 \) and \(a_x, C_1, y_{x-1}, y_{x-1}, a_x, l_2, b \) which satisfy Claim 1, and hence, the result follows.

Subclaim 2. For any vertex \(v \in V(P_1), v \notin A \), and for any vertex \(u \in V(P_{k-1}), u \notin B \).

Proof. Suppose that there exists a vertex \(v \in V(P_1) \) such that \(v \in A \). If \(|\text{Fr}_1(A)| = 1 \) and \(v = v_{1,1} \), then, since

\[
|\text{Fr}(A)| = |\text{Fr}(B)| = k - 1,
\]

\(\text{Fr}(A) \) is a cutset separating \(a \) from \(b \) and its cardinality is \(k - 1 \), which is contrary to the connectivity of \(G \). So, we may assume that \(sup_i(A) \)
is not \(x_{1,1} \). Let \(x_{1,s} \) be \(\text{sup}_1(A) \). Also, let \(Q \) be the set of vertices in \(x_{1,1}, P_1, x_{1,s-1} \). Let \(C_0 \) be

\[
C_0 := I(Q, Q) \cup \{x_{1,s}\} \cup Q
\]

and for \(i \geq 1 \), let \(C_i \) be

\[
C_i := C_{i-1} \cup I(\text{Int}(C_{i-1}), Q).
\]

\(C_{-1} \) will be interpreted as \(\emptyset \). We prove the following statement: There do not exist distinct vertices \(c_x \) and \(b_y \) in \(P_i \) such that \(c_x \in C_x \) and \(b_y \in B_y \) for any \(x \geq 0 \), for some \(y \geq 0 \) and for \(i = 1, \ldots, k-1 \).

Proof. If there exist such two distinct vertices \(c_x \) and \(b_y \) in \(P_i \), choosing \(x \) minimal, and considering two paths connecting \(a \) to \(b_y \) and \(c_x \) to \(b_y \), or \(a \) to \(c_x \) and \(b_y \) to \(b \) along one side of \(P \), we can consider the following statement:

\(X(x) \) There exist two disjoint paths \(R_x \) and \(R'_x \) that one starts at \(c_x \) in \(C_x \) and terminates at \(b_y \) in \(B_y \) and the other starts at \(a \) and terminates at \(b_y \), or one starts at \(c_x \) in \(C_x \) and terminates at \(b_y \) and the other starts at \(a \) and terminates at \(b_y \) in \(B_y \), or one starts at \(c_x \) in \(C_x \) and terminates at \(a \) and the other starts at \(b_y \) and terminates at \(b_y \) in \(B_y \), such that conditions \((S_1)-(S_3)\) below are satisfied.

\[(S_1)\] \(R_x \cup R'_x \) includes all the edges in \(L \) and all the vertices in \(\text{Int}(C_{x-1}) \), \(\text{Int}(A) \), \(\text{Int}(B) \) and \(Q \) for \(x \geq 1 \).

\[(S_2)\] For any \(c_0 \in C_0 \), if there exists a path \(c_0 \ast q \) where \(q \in Q \), then \(c_0 \ast q \cap \{R_x \cup R'_x\} \subseteq \{q, c_0\} \), and the only vertices of \(R_x \cup R'_x \) not in \(P \) occur in segment of \(R_x \setminus L \) and \(R'_x \setminus L \) of the form \(w, w \ast r, r \), where \(w \) and \(r \) are both in \(P \) but not both in \(C_x \).

\[(S_3)\] For each of the paths \(R_x \setminus L \) and \(R'_x \setminus L \), say \(S_x \), and each \(x' \leq x-1 \), if there is a vertex \(s \) such that \(s \in S_x \cap \text{Int}(C_{x'}) \), then there are two vertices of \(\text{Fr}(C_{x'}) \) occurring before and after \(s \) along \(S_x \) and each of the vertices between them along \(S_x \) is in \(\text{Int}(C_{x'}) \) and if \(S_x \) contains a vertex \(x_{1,s} \), then \(x_{1,s} \) is adjacent to \(Q \) in \(S_x \) and furthermore \(S_x \) contains the segment \(x_{1,1}, P_1, x_{1,s-1} \).

It is sufficient to prove the following statement.

If \(X(x) \) holds, then \(G \) has one or two disjoint circuits containing all the edges in \(L \).

Proof. We prove by induction on \(x \). Suppose \(x = 0 \).

Let \(T_0 \) be a path \(T_0 = q \ast c_0 \), where \(q \in Q \). By the condition \((S_2)\), \(q \ast c_0 \cap \{R_0 \cup R'_0\} \subseteq \{q, c_0\} \). Note that \(x_{1,s} \in A_{x'} \) for some \(x' \). Also, by the
condition (S₁), either \(q, R_0, c_0 \) or \(c_0, R_0, q \) or \(q, R'_0, c_0 \) or \(c_0, R'_0, q \) does not contain any vertices in \(\text{Int}(A) \cup \text{Int}(B) \).

We consider three cases for \(R_0 \) and \(R'_0 \).

Case 1. \(R_0 \) is a path which starts at \(c_0 \) in \(C_0 \) and terminates at \(b \) in \(B_0 \), and \(R'_0 \) is a path which starts at \(a \) and terminates at \(b \).

Suppose \(q \in R_0 \). If \(c_0, R_0, x_{1,z} \) is shorter than \(c_0, R_0, q \), then we can get two paths \(x_{1,z}, \overrightarrow{R_0}, c_0 \cdot q, q, R_0, b \) and \(R'_0 \) which satisfy Claim 1, and hence, the result follows. If \(c_0, R_0, x_{1,z} \) is longer than \(c_0, R_0, q \), then we can get two paths \(x_{1,z}, R_0, b \) and \(R'_0 \), and a cycle \(c_0, R_0, q, q \cdot c_0, c_0 \) which satisfy Subclaim 1, and hence, the result follows.

Suppose \(q \in R'_0 \). If \(a, R'_0, x_{1,z} \) is shorter than \(a, R'_0, q \), then we can get two paths \(a, R'_0, x_{1,z} \) and \(b, \overrightarrow{R'_0}, q, q \cdot c_0, c_0, R_0, b \), which satisfy Claim 1, and hence, the result follows. If \(a, R'_0, x_{1,z} \) is longer than \(a, R'_0, q \), then we can get two paths \(x_{1,z}, R'_0, b \) and \(a, R'_0, q, q \cdot c_0, c_0, R_0, b \), which satisfy Claim 1, and hence, the result follows.

Case 2. \(R_0 \) is a path which starts at \(c_0 \) in \(C_0 \) and terminates at \(b \) and \(R'_0 \) is a path which starts at \(a \) and terminates at \(b \) in \(B_0 \).

Suppose \(q \in R_0 \). If \(c_0, R_0, x_{1,z} \) is shorter than \(c_0, R_0, q \), then we can get two paths \(x_{1,z}, \overrightarrow{R_0}, c_0 \cdot q, q, R_0, b \) and \(R'_0 \) which satisfy Claim 1, and hence, the result follows. If \(c_0, R_0, x_{1,z} \) is longer than \(c_0, R_0, q \), then we can get two paths \(x_{1,z}, R_0, b \) and \(R'_0 \), and a cycle \(c_0, R_0, q, q \cdot c_0, c_0 \) which satisfy Subclaim 1, and hence, the result follows.

Suppose \(q \in R'_0 \). If \(a, R'_0, x_{1,z} \) is shorter than \(a, R'_0, q \), then we can get two paths \(a, R'_0, x_{1,z} \) and \(b, \overrightarrow{R'_0}, c_0 \cdot q, q, R'_0, b \), which satisfy Claim 1, and hence, the result follows. If \(a, R'_0, x_{1,z} \) is longer than \(a, R'_0, q \), then we can get two paths \(x_{1,z}, R'_0, b \) and \(a, R'_0, q, q \cdot c_0, c_0, R_0, b \) which satisfy Claim 1, and hence, the result follows.

Case 3. \(R_0 \) is a path which starts at \(c_0 \) in \(C_0 \) and terminates at \(a \) and \(R'_0 \) is a path which starts at \(b \) and terminates at \(b \) in \(B_0 \).

Suppose \(q \in R_0 \). If \(c_0, R_0, x_{1,z} \) is shorter than \(c_0, R_0, q \), then we can get two paths \(x_{1,z}, \overrightarrow{R_0}, c_0 \cdot q, q, R_0, a \) and \(R'_0 \) which satisfy Claim 1, and hence, the result follows. If \(c_0, R_0, x_{1,z} \) is longer than \(c_0, R_0, q \), then we can get two paths \(x_{1,z}, R_0, a \) and \(R'_0 \), and a cycle \(c_0, R_0, q, q \cdot c_0, c_0 \) which satisfy Subclaim 1, and hence, the result follows.

Suppose \(q \in R'_0 \). If \(b, R'_0, x_{1,z} \) is shorter than \(b, R'_0, q \), then we can get two paths \(b, R'_0, x_{1,z} \) and \(b, \overrightarrow{R'_0}, q, q \cdot c_0, c_0, R'_0, a \) which satisfy Claim 1, so, the result follows. If \(a, R'_0, x_{1,z} \) is longer than \(a, R'_0, q \), then we can get two paths \(x_{1,z}, R'_0, b \) and \(b, R'_0, q, q \cdot c_0, c_0, R_0, a \) which satisfy Claim 1, and hence, the result follows.

Suppose \(x > 0 \). If \(c_e \in C_{x−1} \), the result follows by the induction hypothesis. So, we may assume \(c_e \in C_0 \setminus C_{x−1} \). We can choose a path \(c_e \cdot y_{x−1} \)
connecting c_x to y_{x-1}, where $y_{x-1} \in \text{Int}(C_{x-1})$. This path does not intersect any segment w, $w \cdot r$, r in R_x or in R'_x with w and r in P except for its end vertices c_x and y_{x-1}. For otherwise, both w and r are in C_{x-1}, which is contrary to (S_i). Note that $y_{x-1} \notin \text{Int}(A)$, for otherwise, we can choose two vertex disjoint paths which satisfy Claim 1, a contradiction.

By the condition (S_i), there exists a vertex $c_{x-1} \in C_{x-1}$ which is preceding y_{x-1} such that the segment c_{x-1}, R_x, y_{x-1} or c_{x-1}, R'_x, y_{x-1} does not contain edges in L. Now we choose a vertex c_y which is the last vertex before y_{x-1} along R_x (if $y_{x-1} \in R_x$) or along R'_x (if $y_{x-1} \in R'_x$) and c_y is in $\text{Fr}(C_x)$ for any $x' \leq x-1$, and choose x' minimal so that $c_y \notin \text{Cl}(C_{x-1})$. Also, by the condition (S_i), there exists a vertex $c'_{x-1} \in C_{x-1}$ which is succeeding y_{x-1} such that the segment y_{x-1}, R_x, c'_{x-1} or y_{x-1}, R'_x, c'_{x-1} does not contain edges in L. Now we choose a vertex c'_{y} which is the last vertex after y_{x-1} along R_x (if $y_{x-1} \in R_x$) or along R'_x (if $y_{x-1} \in R'_x$) and c_y is in $\text{Fr}(C_x)$ for any $x' \leq x-1$, and choose x' minimal so that $c'_{y} \notin \text{Cl}(C_{x-1})$. We will write c_y instead of c'_{y}, since it may not be confusing for readers.

Then there does not exist a vertex that is in $\text{Int}(C_{x-1})$ in the segments both c_y, R_x, y_{x-1} and y_{x-1}, R_x, c_y (if $y_{x-1} \in R_x$), or both c_y, R'_x, y_{x-1} and y_{x-1}, R'_x, c_y (if $y_{x-1} \in R'_x$). We may assume that there are no vertices in $\text{Int}(B)$ in the segments both c_y, R_x, y_{x-1} and y_{x-1}, R_x, c_y (if $y_{x-1} \in R_x$), or both c_y, R'_x, y_{x-1} and y_{x-1}, R'_x, c_y (if $y_{x-1} \in R'_x$). For otherwise, there exist some P_i of P which contains distinct vertices r, w such that $r \in C_{x-1}$ and $w \in B$. But, in this case, choosing the paths connecting a to r and b to w along P_i, or a to w and b to r along P_i there exist two disjoint paths R_{x-1} and R'_{x-1}, and hence the result follows by the induction hypothesis. If there exists a vertex in $\text{Int}(A)$ in the segments c_y, R_x, y_{x-1} or y_{x-1}, R_x, c_y (if $y_{x-1} \in R_x$), or c_y, R'_x, y_{x-1} or y_{x-1}, R'_x, c_y (if $y_{x-1} \in R'_x$), then we choose vertices a_y which are either the last vertex before y_{x-1} along R_x or the last vertex after y_{x-1} along R_x (if $y_{x-1} \in R_x$), or the last vertex before y_{x-1}, R'_x or the last vertex after y_{x-1} along R'_x (if $y_{x-1} \in R'_x$), and a_y is in $\text{Fr}(A)$ for any $x'' \leq x'-1$, and choose x'' minimal so that $a_y \notin \text{Cl}(A_{x-1})$. Then we assume a_y as c_y.

Now we consider three cases for R_x and R'_x.

Case 1. R_x is a path which starts at c_x in C_x and terminates at b_y in B_x and R'_x is a path which starts at a and terminates at b.

First, assume c_y is not a_y. If $y_{x-1} \in R_x$, then we can replace the path R_x such that c_x, R_x, c_y and y_{x-1}. If $y_{x-1} \in R'_x$, then we can replace the path R'_x such that b_y, R'_x. These two paths satisfy the case of x'. So, the result follows by the induction hypothesis.

If $y_{x-1} \in R_x$, then we can replace the path R_x such that b, R_x, y_{x-1}, c_x, R_x, b_y, and also we can replace the path R'_x such that c_y, R'_x, a. These two paths satisfy the case of x'. So, the result follows by the induction hypothesis.
Finally, suppose \(c' \) is \(a' \). Then by the same way, we can get two disjoint paths which satisfy Claim 1. Hence the result follows.

Case 2. \(R' \) is a path which starts at \(c' \) in \(C' \) and terminates at \(b' \) and \(R'_c \) is a path which starts at \(a' \) and terminates at \(b' \) in \(B' \).

First, assume \(c' \) is not \(a' \). If \(y_{x-1} \in R'_c \), then we can replace the path \(R'_c \) such that \(c'_x, R'_c, c_x, y_{x-1}, y_{x-1}, R' \), \(b' \). And \(R'_c \) is \(R'_c' \). These two paths satisfy the case of \(x' \). So, the result follows by the induction hypothesis.

If \(y_{x-1} \in R'_c \), then we can replace the path \(R'_c' \) such that \(b', \overline{R'_c}, c_x, c'_x, y_{x-1}, y_{x-1}, R'_c \), \(b' \), and also we can replace the path \(R'_c \) such that \(c'_x, R'_c', a \). These two paths satisfy the case of \(x' \). So, the result follows by the induction hypothesis.

Finally, suppose \(c' \) is \(a' \). Then by the same way, we can get two disjoint paths which satisfy Claim 1. Hence the result follows.

Case 3. \(R'_c \) is a path which starts at \(c'_x \) in \(C'_c \) and terminates at \(a' \) and \(R'_c' \) is a path which starts at \(b' \) and terminates at \(b'_y \) in \(B' \).

First, assume \(c'_x \) is not \(a' \). If \(y_{x-1} \in R'_c \), then we can replace the path \(R'_c \) such that \(c'_x, R'_c, c_x, c'_x, y_{x-1}, y_{x-1}, R_c \), \(a \). And \(R'_c \) is \(R'_c' \). These two paths satisfy the case of \(x' \). So, the result follows by the induction hypothesis.

If \(y_{x-1} \in R'_c' \), then we can replace the path \(R'_c' \) such that \(a, \overline{R'_c}, c_x, c'_x, y_{x-1}, y_{x-1}, R'_c' \), \(b' \), and also we can replace the path \(R'_c \) such that \(c'_x, R'_c', b'_y \). These two paths satisfy the case of \(x' \). So, the result follows by the induction hypothesis.

Finally, suppose \(c'_x \) is \(a' \). Then by the same way, we can get two disjoint paths which satisfy Claim 1. Hence the result follows.

Since \(V(P) \) is finite, the sequence of sets \(C_0 \subseteq C_1 \subseteq \cdots \) must be constant from some point onwards. Let \(C \) be the final sets. As \(|Fr(A)| = |Fr(B)| = k-1 \), \(|Fr(C)| = k-1 \).

Then, \((Fr(C) \setminus \{x_1, 1\}) \cup \{a\} \) is a cutset separating \(Q \) from \(b \) and its cardinality is at most \(k - 1 \), which is contrary to the connectivity of \(G \).

The case of \(P_{x-1} \) follows by the same argument. So, Subclaim 2 follows.

Since \(a \) and \(b \) are symmetric and \(|P_x| \geq 2 \), we may assume that there exists a vertex \(x_{r,j-1} \). Note that, by Lemma 1, \(x_{r,j-1} \notin A \cup B \). Let \(H \) be the set of vertices in \(x_{r,1}, P_r, x_{r,j-1} \). Note that, for any \(h \in H \), \(h \notin Int(A) \) and \(h \notin Int(B) \). Let \(D_0 \) be

\[
D_0 := I(H, H) \cup \{x_{r,j}\}
\]

and, for \(z \geq 1 \), let \(D_z \) be

\[
D_z := D_{z-1} \cup I(\text{Int}(D_{z-1}), H).
\]

\(D_{z-1} \) will be interpreted as \(\emptyset \).
Suppose \(d_i \in D_i \) and \(b_j \in B_j, a_k \in A_k \), for some \(x_i, y_j \geq 0 \).

Note that \(x_{r,j} \in A \cap B \), that is, \(x_{r,j} \in A_k \) and \(x_{r,j} \in B_j \) for some \(x, y \geq 0 \).

Also, note that \(i' \neq 1, k-1 \) by Subclaim 2.

We prove the following statements.

1. **There do not exist two distinct vertices** \(d_i \) and \(b_j \) in \(P_i \) such that \(d_i \in D_i \) and \(b_j \in B_j \) for any \(z \geq 0 \) and for \(i = 1, \ldots, k-1, i \neq i' \).

2. **There do not exist two distinct vertices** \(a_i \) and \(d_i \) in \(P_{k-1} \), such that \(a_i \in A_i \) and \(d_i \in D_i \), for any \(z \geq 0 \).

Proof. If there exist such vertices \(d_i \) and \(b_j \) in \(P_i \), then choosing \(z \) minimal, and considering three paths as follows: If \(i < i' \), then we can get

 - (a) \(a, P, b, d, P, x_{r,j-1} \) and \(a, P, b \).

 - (b) \(a, P, d, b, P, x_{r,j-1} \) and \(a, P, b \).

If \(i > i' \), then we can get

 - (c) \(a, P, x_{r,j-1} \) and \(a, P, d, b, P, b \).

 - (d) \(a, P, x_{r,j-1} \) and \(a, P, b, d, P, b \).

If there exists a vertex \(d_i \) in \(P_{k-1} \), then we choose \(z \) minimal and consider three paths as

 - (e) \(a, P, x_{r,j-1} \) and \(b, P, d, a, P, b \).

 - (f) \(a, P, x_{r,j-1} \) and \(b, P, a, d, P, b \).

To prove those statements, it is sufficient to prove the following subclaim.

Subclaim 3. If there exist three paths \(l_1, l_2, \) and \(l_3 \) in the following cases:

 Case 1. \(l_1 \) is connecting from \(a \) to \(x_{r,j-1} \), \(l_2 \) is connecting from \(d_i \) to \(b_j \), and \(l_3 \) is connecting from \(a \) to \(b \).

 Case 2. \(l_1 \) is connecting from \(a \) to \(x_{r,j-1} \), \(l_2 \) is connecting from \(d_i \) to \(b_j \), and \(l_3 \) is connecting from \(a \) to \(b \).

 Case 3. \(l_1 \) is connecting from \(a \) to \(x_{r,j-1} \), \(l_2 \) is connecting from \(d_i \) to \(a_k \), and \(l_3 \) is connecting from \(b_j \) to \(b \).

 Case 4. \(l_1 \) is connecting from \(a \) to \(d_i \), \(l_2 \) is connecting from \(a_k \) to \(x_{r,j-1} \), and \(l_3 \) is connecting from \(b_j \) to \(b \).

 Case 5. \(l_1 \) is connecting from \(a \) to \(d_i \), \(l_2 \) is connecting from \(a_k \) to \(b_j \), and \(l_3 \) is connecting from \(b_j \) to \(x_{r,j-1} \).

 Case 6. \(l_1 \) is connecting from \(a \) to \(b_j \), \(l_2 \) is connecting from \(d_i \) to \(x_{r,j-1} \), and \(l_3 \) is connecting from \(a_k \) to \(b \).
Case 7. \(l_1 \) is connecting from \(a \) to \(b_y \), \(l_2 \) is connecting from \(d_x \) to \(a_x \), and \(l_3 \) is connecting from \(b \) to \(x_{r,j-1} \).

Case 8. \(l_1 \) is connecting from \(a \) to \(b_y \), \(l_2 \) is connecting from \(d_x \) to \(b \), and \(l_1 \) is connecting from \(a_x \) to \(x_{r,j-1} \).

Case 9. \(l_1 \) is connecting from \(a \) to \(x_{r,j-1} \), \(l_2 \) is connecting from \(b_y \) to \(x_{r,j-1} \), and \(l_3 \) is connecting from \(b_y \) to \(b \).

Case 10. \(l_1 \) is connecting from \(a \) to \(a_x \), \(l_2 \) is connecting from \(d_x \) to \(x_{r,j-1} \), and \(l_3 \) is connecting from \(b_y \) to \(x_{r,j-1} \).

And also, \(l_1 \cup l_2 \cup l_3 \) satisfies the following conditions:

(S1) \(l_1 \cup l_2 \cup l_3 \) includes all the edges in \(L \) and all the vertices in \(\text{Int}(A_{r-1}) \), \(\text{Int}(B_{r-1}) \), \(\text{Int}(D_{r-1}) \), and \(H \).

(S2) The only vertices of \(l_1 \cup l_2 \cup l_3 \) not in \(P \) occur in segment of \(l_1 \setminus L \), \(l_2 \setminus L \), and \(l_3 \setminus L \) of the form \(w, w * r, r \), where \(w \) and \(r \) are both in \(P \) but not both in \(D_r \).

(S3) For each of the paths of \(l_1 \setminus L \), \(l_2 \setminus L \), and \(l_3 \setminus L \), say \(Q_i \), and each \(z' \leq z - 1 \), if there is a vertex \(q \) such that \(q \in Q_i \cap \text{Int}(D_r) \), then there are two vertices of \(\text{Fr}(D_r) \) occurring before and after \(q \) along \(Q_i \), and each of the vertices between them along \(Q_i \) is in \(\text{Int}(D_r) \) and if \(Q_i \) contains \(x_{r,j-1} \), then \(x_{r,j-1} \) is adjacent to \(H \) in \(Q_i \) and \(Q_i \) contains the segment \(x_{r,1}, P, x_{r,j-1} \).

Then there exist one or two disjoint circuits that contain all the edges in \(L \).

Proof. We prove Subclaim 3 by induction on \(z \). Suppose \(z = 0 \).

Let \(T_x \) be a path \(T_x = q * d_0, q \in H \). \(T_x \) does not intersect any segment \(w \), \(w * r, r \) in \(l_1 \) or in \(l_2 \) or in \(l_3 \) with \(w \) and \(r \) in \(P \) except for its end vertices \(d_0 \) and \(q \). For otherwise, both \(w \) and \(r \) are in \(D_r \), which is contrary to (S2). By the condition (S3), there exists the vertex \(x_{r,j-1} \) which is preceding \(q \) such that the segment \(q, l_1, x_{r,j-1} \) or \(x_{r,j-1}, l_1, q \) or \(q, l_2, x_{r,j-1} \) or \(x_{r,j-1}, l_2, q \) or \(q, l_3, x_{r,j-1} \) or \(x_{r,j-1}, l_3, q \) does not contain edges in \(L \). Also, by the condition (S3), it is easy to check that the segment \(q, l_1, x_{r,j-1} \) or \(x_{r,j-1}, l_1, q \) or \(q, l_2, x_{r,j-1} \) or \(x_{r,j-1}, l_2, q \) or \(q, l_3, x_{r,j-1} \) or \(x_{r,j-1}, l_3, q \) does not contain vertices in \(\text{Int}(A_{r-1}) \cup \text{Int}(B_{r-1}) \).

We consider eleven cases for \(l_1, l_2, \) and \(l_3 \).

Case 1. \(l_1 \) is connecting from \(a \) to \(x_{r,j-1} \), \(l_2 \) is connecting from \(d_0 \) to \(b_y \), and \(l_3 \) is connecting from \(a_x \) to \(b \).

In this case, we get two paths \(a, l_1, q, q * d_0, d_0, l_2, b_y \) and \(l_3 \) which satisfy Claim 1, and hence, the result follows.
Case 2. \(l_1 \) is connecting from \(a \) to \(x_{r,j-1} \), \(l_2 \) is connecting from \(d_0 \) to \(b \), and \(l_3 \) is connecting from \(a_s \) to \(b_j \).

In this case, we get two paths \(a, l_1, q, q \ast d_0, d_0, l_2, b \) and \(l_3 \) which satisfy Claim 1, and hence, the result follows.

Case 3. \(l_1 \) is connecting from \(a \) to \(x_{r,j-1} \), \(l_2 \) is connecting from \(d_0 \) to \(a_s \), and \(l_3 \) is connecting from \(b_j \) to \(b \).

In this case, we get two paths \(a, l_1, q, q \ast d_0, d_0, l_2, a_s \) and \(l_3 \) which satisfy Claim 1, and hence, the result follows.

Case 4. \(l_1 \) is connecting from \(a \) to \(d_0 \), \(l_2 \) is connecting from \(a_s \) to \(x_{r,j-1} \), and \(l_3 \) is connecting from \(b \) to \(b \).

In this case, we get two paths \(a, l_1, d_0, d_0 \ast q, q, \bar{T}_2, a_s \) and \(l_3 \) which satisfy Claim 1, and hence, the result follows.

Case 5. \(l_1 \) is connecting from \(a \) to \(d_0 \), \(l_2 \) is connecting from \(a_s \) to \(b_j \), and \(l_3 \) is connecting from \(b \) to \(x_{r,j-1} \).

In this case, we get two paths \(a, l_1, d_0, d_0 \ast q, q, \bar{T}_2, b \) and \(l_2 \) which satisfy Claim 1, and hence, the result follows.

Case 6. \(l_1 \) is connecting from \(a \) to \(b_j \), \(l_2 \) is connecting from \(d_0 \) to \(x_{r,j-1} \), and \(l_3 \) is connecting from \(a_s \) to \(b \).

In this case, we get a cycle \(d_0, l_2, q, q \ast d_0, d_0 \) and two paths \(l_1 \) and \(l_3 \), which satisfy Subclaim 1, and hence, the result follows.

Case 7. \(l_1 \) is connecting from \(a \) to \(b_j \), \(l_2 \) is connecting from \(d_0 \) to \(a_s \), and \(l_3 \) is connecting from \(b \) to \(x_{r,j-1} \).

In this case, we get two paths \(l_1 \) and \(a_s, \bar{T}_2, d_0, d_0 \ast q, q, \bar{T}_2, b \) which satisfy Claim 1, and hence, the result follows.

Case 8. \(l_1 \) is connecting from \(a \) to \(b_j \), \(l_2 \) is connecting from \(d_0 \) to \(b \), and \(l_3 \) is connecting from \(a_s \) to \(x_{r,j-1} \).

In this case, we get two paths \(l_1 \) and \(b, \bar{T}_2, d_0, d_0 \ast q, q, \bar{T}_2, a \) which satisfy Claim 1, and hence, the result follows.

Case 9. \(l_1 \) is connecting from \(a \) to \(d_0 \), \(l_2 \) is connecting from \(b_j \) to \(x_{r,j-1} \), and \(l_3 \) is connecting from \(a_s \) to \(b \).

In this case, we get two paths \(l_1 \) and \(a, l_1, d_0, d_0 \ast q, q, \bar{T}_2, b \) which satisfy Claim 1, and hence, the result follows.

Case 10. \(l_1 \) is connecting from \(a \) to \(a_s \), \(l_2 \) is connecting from \(d_0 \) to \(x_{r,j-1} \), and \(l_3 \) is connecting from \(b_j \) to \(b \).

In this case, we get two paths \(l_1 \) and \(\bar{T}_2, d_0, d_0 \ast q, q, \bar{T}_2, b \), and a cycle \(d_0, l_2, q, q \ast d_0 \) which satisfy Subclaim 1, and hence, the result follows.

Case 11. \(l_1 \) is connecting from \(a \) to \(a_s \), \(l_2 \) is connecting from \(d_0 \) to \(b \), and \(l_3 \) is connecting from \(b_j \) to \(x_{r,j-1} \).
In this case, we get two paths \(l_1 \) and \(b, \bar{T}_2, d_{o_1}, d_{q_1} \), which satisfy Claim 1, and hence, the result follows.

Suppose \(z > 0 \). If \(d_{z} \in D_{z-1} \), the result follows by the induction hypothesis. So, we may assume \(d_{z} \in D_{z} \setminus D_{z-1} \). We can choose a path \(d_{z} \ast y_{z-1} \), connecting \(d_{z} \) to \(y_{z-1} \), where \(y_{z-1} \in \text{Int}(D_{z-1}) \). This path does not intersect any segment \(w, w \ast r, r \) in \(l_{1} \), or in \(l_{2} \) or in \(l_{3} \) with \(w \) and \(r \) in \(P \) except for its end vertices \(d_{z} \) and \(y_{z-1} \). For otherwise, both \(w \) and \(r \) are in \(D_{z} \), which is contrary to \((S)\). By the condition \((S)\), there exists a vertex \(d_{z-1} \in D_{z-1} \) which is preceding \(y_{z-1} \) such that the segment \(d_{z-1} \ast l_{1}, y_{z-1} \) or \(d_{z-1} \ast l_{2}, y_{z-1} \) or \(d_{z-1} \ast l_{3}, y_{z-1} \) does not contain edges in \(L \). Now we choose a vertex \(d_{z} \) which is the last vertex before \(y_{z-1} \) along \(l_{1} \) in \(Fr(D_{z}) \) (if \(y_{z-1} \in l_{1} \)) or along \(l_{2} \) in \(Fr(D_{z}) \) (if \(y_{z-1} \in l_{2} \)) or along \(l_{3} \) in \(Fr(D_{z}) \) (if \(y_{z-1} \in l_{3} \)) and \(d_{z} \) is in \(Fr(D_{z}) \) for any \(z' \leq z - 1 \), and choose \(z' \) minimal so that \(d_{z} \notin \text{Cl}(D_{z-1}) \). Also, by the condition \((S)\), there exists \(d_{z-1} \in D_{z-1} \) which is succeeding \(y_{z-1} \) such that the segment \(y_{z-1} \ast l_{1}, d_{z-1} \ast l_{1}, l_{3}, y_{z-1} \) or \(y_{z-1} \ast l_{2}, d_{z-1} \ast l_{2}, l_{3}, y_{z-1} \) or \(y_{z-1} \ast l_{3}, d_{z-1} \ast l_{3}, l_{3}, y_{z-1} \) does not contain edges in \(L \). Now we choose a vertex \(d_{z} \) which is the last vertex after \(y_{z-1} \) along \(l_{1} \) in \(Fr(D_{z}) \) (if \(y_{z-1} \in l_{1} \)) or along \(l_{2} \) in \(Fr(D_{z}) \) (if \(y_{z-1} \in l_{2} \)) or along \(l_{3} \) in \(Fr(D_{z}) \) (if \(y_{z-1} \in l_{3} \)) and \(d_{z} \) is in \(Fr(D_{z}) \) for any \(z' \leq z - 1 \), and choose \(z' \) minimal so that \(d_{z} \notin \text{Cl}(D_{z-1}) \). We will write \(d_{z} \) instead of \(d_{z} \ast y_{z-1} \) since it may not be confusing for readers.

Then there does not exist a vertex that is in \(\text{Int}(D_{z-1}) \) in the segments both \(y_{z-1} \ast l_{1}, d_{z} \ast l_{1}, y_{z-1} \) (if \(y_{z-1} \in l_{1} \)), or both \(y_{z-1} \ast l_{1}, d_{z} \ast l_{1}, y_{z-1} \ast l_{2}, d_{z} \ast l_{2}, y_{z-1} \ast l_{3}, d_{z} \ast l_{3}, y_{z-1} \) (if \(y_{z-1} \in l_{1} \)).

We may assume that there are no vertices in \(\text{Int}(A) \cup \text{Int}(B) \) in the segments both \(y_{z-1} \ast l_{1}, d_{z} \ast l_{1}, y_{z-1} \ast l_{2}, d_{z} \ast l_{2}, y_{z-1} \ast l_{3}, d_{z} \ast l_{3}, y_{z-1} \) (if \(y_{z-1} \in l_{1} \)), or both \(y_{z-1} \ast l_{1}, d_{z} \ast l_{1}, y_{z-1} \ast l_{2}, d_{z} \ast l_{2}, y_{z-1} \ast l_{3}, d_{z} \ast l_{3}, y_{z-1} \) (if \(y_{z-1} \in l_{1} \)). For otherwise, there exist some \(P \) of \(P \) which contains distinct vertices \(r, w \) such that \(r \in D_{z} \) and \(w \in A \cup B \). But, in this case, we can take three paths which satisfy the case \(z' \). Hence the result follows by the induction hypothesis.

Now we consider eleven cases for \(l_{1}, l_{2}, \) and \(l_{3} \).

Case 1. \(l_{1} \) is connecting from \(a \) to \(x_{r', j-1} \), \(l_{2} \) is connecting from \(d_{z} \) to \(b_{r} \), and \(l_{3} \) is connecting from \(a_{r} \) to \(b \).

In this case, if \(y_{z-1} \in l_{2} \), then we can replace the path \(l_{2} \) such that \(d_{z}, \bar{T}_{2}, d_{z}, d_{z} \ast y_{z-1}, l_{2}, b_{r}, l_{3} \) and \(l_{3} \) are still \(l_{1} \) and \(l_{3} \). These three paths \(l_{1}, l_{2}, \) and \(l_{3} \) satisfy the case \(z' \) of Case 1. So, the result follows by the induction hypothesis.

If \(y_{z-1} \in l_{1} \), then we can replace the path \(l_{1} \) such that \(a_{r}, l_{1}, y_{z-1}, y_{z-1} \ast d_{z}, l_{2}, b_{r}, l_{3} \), and also we can replace the path \(l_{1} \) such that \(d_{z}, l_{1}, x_{r', j-1}, l_{3} \) is \(l_{1} \). These three paths \(l_{1}, l_{2}, \) and \(l_{3} \) satisfy the case \(z' \) of Case 6. So, the result follows by the induction hypothesis.
If $y_{z-1} \in l_3$, then we can replace the path l_2 such that d_z, T_z, a_z and also we can replace the path l_1 such that $b_z, T_z, d_z, d_z \ast y_{z-1}, y_{z-1}, l_1, b, l_1$ is still l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 3. So, the result follows by the induction hypothesis.

Case 2. l_1 is connecting from a to x_r, j_{-1}, l_2 is connecting from d_z to b, and l_3 is connecting from a_z to b_z.

In this case, if $y_{z-1} \in l_2$, then we can replace the path l_2 such that $d_z, T_z, d_z, d_z \ast y_{z-1}, y_{z-1}, l_2, b, l_1$ and l_3 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 2. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_1$, then we can replace the path l_1 such that a, l_1, d_z and also we can replace the path l_1 such that $b_z, T_z, d_z, d_z \ast y_{z-1}, y_{z-1}, l_1, x_r, j_{-1}$. l_2 is l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 5. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_2 such that d_z, T_z, a_z and also we can replace the path l_1 such that $b_z, T_z, y_{z-1}, y_{z-1} \ast d_z, d_z, l_2, b, l_1$ is still l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 3. So, the result follows by the induction hypothesis.

Case 3. l_1 is connecting from a to x_r, j_{-1}, l_2 is connecting from d_z to a_z, and l_3 is connecting from b_z to b.

In this case, if $y_{z-1} \in l_2$, then we can replace the path l_2 such that $d_z, T_z, d_z, d_z \ast y_{z-1}, y_{z-1}, l_2, a_z, l_1$ and l_3 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 3. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_1$, then we can replace the path l_1 such that $a_z, T_z, d_z, d_z \ast y_{z-1}, y_{z-1}, l_1, x_r, j_{-1}$ and also we can replace the path l_1 such that a, l_1, d_z, l_3 is still l_1. These three paths l_1, l_2, and l_3 satisfy the cases z' of Case 4. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_2 such that d_z, T_z, b_z, and also we can replace the path l_1 such that $a_z, T_z, d_z, d_z \ast y_{z-1}, y_{z-1}, l_1, b, l_1$ is still l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 1. So, the result follows by the induction hypothesis.

Case 4. l_1 is connecting from a to d_z, l_2 is connecting from a_z to x_r, j_{-1}, and l_3 is connecting from b_z to b.

In this case, if $y_{z-1} \in l_1$, then we can replace the path l_1 such that $a, l_1, y_{z-1}, y_{z-1} \ast d_z, d_z, T_z, d_z, l_2$ and l_1 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 4. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_2$, then we can replace the path l_1 such that $a, l_1, d_z, d_z \ast y_{z-1}, y_{z-1}, l_2, x_r, j_{-1}$ and also we can replace the path l_2 such that d_z, T_z, a_z, l_3 is
still l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 3. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_2 such that d_z, l_3, b, and also we can replace the path l_1 such that a, l_1, d_z, $d_z \ast y_{z-1}$, T_b, b, l_3 is l_2. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 8. So, the result follows by the induction hypothesis.

Case 5. l_1 is connecting from a to d_z, l_2 is connecting from a_\ast to b_y, and l_3 is connecting from b to $x_{r,j-1}$.

In this case, if $y_{z-1} \in l_1$, then we can replace the path l_1 such that a, l_1, y_{z-1}, $y_{z-1} \ast d_z$, $d_z \ast y_{z-1}$, l_2 and l_3 are still l_2 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 5. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_2$, then we can replace the path l_1 such that a, l_1, d_z, $d_z \ast y_{z-1}$, l_2, b, and also we can replace the path l_3 such that d_z, T_b, a_\ast, l_3 is still l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 7. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_2 such that d_z, T_b, b and also we can replace the path l_1 such that a, l_1, d_z, $d_z \ast y_{z-1}$, l_1, $x_{r,j-1}$, l_3 is l_2. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 2. So, the result follows by the induction hypothesis.

Case 6. l_1 is connecting from a to b_y, l_2 is connecting from d_z to $x_{r,j-1}$, and l_3 is connecting from a_\ast to b.

In this case, if $y_{z-1} \in l_1$, then we can replace the path l_2 such that d_z, T_b, d_z, $d_z \ast y_{z-1}$, l_2, $x_{r,j-1}$, l_1 and l_3 are still l_2 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 6. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_2$, then we can replace the path l_1 such that a, l_1, y_{z-1}, $y_{z-1} \ast d_z$, d_z, $x_{r,j-1}$, l_1 is still l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 1. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_2 such that d_z, T_b, a_\ast and also we can replace the path l_3 such that b, T_b, y_{z-1}, $y_{z-1} \ast d_z$, d_z, $x_{r,j-1}$, l_3 is still l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 7. So, the result follows by the induction hypothesis.

Case 7. l_1 is connecting from a to b_y, l_2 is connecting from d_z to a_\ast, and l_3 is connecting from b to $x_{r,j-1}$.

In this case, if $y_{z-1} \in l_2$, then we can replace the path l_2 such that d_z, T_b, d_z, $d_z \ast y_{z-1}$, l_2, a_\ast, l_1 and l_3 are still l_2 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 7. So, the result follows by the induction hypothesis.
If \(y_{z-1} \in l_1 \), then we can replace the path \(l_1 \) such that \(a, l_1, d_e \) and also we can replace the path \(l_1 \) such that \(a_x, T_2, d_e, d_e * y_{z-1}, y_{z-1}, l_1, b_y, l_3 \) is still \(l_3 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(z' \) of Case 5. So, the result follows by the induction hypothesis.

If \(y_{z-1} \in l_1 \), then we can replace the path \(l_1 \) such that \(d_x, T_3, b \) and also we can replace the path \(l_1 \) such that \(a_x, T_2, d_e, d_e * y_{z-1}, y_{z-1}, l_3, x_r, j-1, l_3 \) is still \(l_3 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(z' \) of Case 8. So, the result follows by the induction hypothesis.

Case 8. \(l_1 \) is connecting from \(a \) to \(b \), \(l_2 \) is connecting from \(d_e \) to \(b \), and \(l_3 \) is connecting from \(a_x \) to \(x_{r, j-1} \).

In this case, if \(y_{z-1} \in l_1 \), then we can replace the path \(l_2 \) such that \(d_e, T_2, d_e, d_e * y_{z-1}, y_{z-1}, l_2, b, l_1, \) and \(l_1 \) are still \(l_1, l_2, \) and \(l_3 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(z' \) of Case 8. So, the result follows by the induction hypothesis.

If \(y_{z-1} \in l_1 \), then we can replace the path \(l_1 \) such that \(b, T_1, y_{z-1}, y_{z-1} * d_e, d_e, l_2, b, l_1 \) and also we can replace the path \(l_1 \) such that \(a, l_1, d_e, l_2 \) is still \(l_1 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(z' \) of Case 4. So, the result follows by the induction hypothesis.

If \(y_{z-1} \in l_1 \), then we can replace the path \(l_1 \) such that \(d_e, l_1, x_{r, j-1} \) and also we can replace the path \(l_1 \) such that \(a_x, y_{z-1}, y_{z-1} * d_e, d_e, l_2, b, l_1 \) is still \(l_1 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(z' \) of Case 6. So, the result follows by the induction hypothesis.

Case 9. \(l_1 \) is connecting from \(a \) to \(d_e, l_2 \) is connecting from \(b \) to \(x_{r, j-1} \), and \(l_3 \) is connecting from \(a_x \) to \(b \).

In this case, if \(y_{z-1} \in l_1 \), then we can replace the path \(l_1 \) such that \(a, l_1, y_{z-1}, y_{z-1} * d_e, d_e, l_2, l_1 \) and \(l_1 \) are still \(l_1, l_2, \) and \(l_3 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(z' \) of Case 9. So, the result follows by the induction hypothesis.

If \(y_{z-1} \in l_2 \), then we can replace the path \(l_1 \) such that \(a, l_1, d_e, d_e * y_{z-1}, y_{z-1}, l_2, x_{r, j-1} \) and also we can replace the path \(l_2 \) such that \(d_e, T_2, b, l_1 \) is still \(l_1 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(z' \) of Case 1. So, the result follows by the induction hypothesis.

If \(y_{z-1} \in l_3 \), then we can replace the path \(l_1 \) such that \(d_e, l_3, b \) and also we can replace the path \(l_1 \) such that \(a, l_1, d_e, d_e * y_{z-1}, y_{z-1}, T_1, a_x, l_3 \) is \(l_2 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(z' \) of Case 11. So, the result follows by the induction hypothesis.

Case 10. \(l_1 \) is connecting from \(a \) to \(a_x, l_2 \) is connecting from \(d_e \) to \(x_{r, j-1} \), and \(l_3 \) is connecting from \(b \) to \(b \).

In this case, if \(y_{z-1} \in l_2 \), then we can replace the path \(l_2 \) such that \(d_e, T_2, d_e, d_e * y_{z-1}, y_{z-1}, l_2, x_{r, j-1} \) and \(l_1 \) are still \(l_1, l_2, \) and \(l_3 \). These three paths
1, l_2, and l_3 satisfy the case z' of Case 10. So, the result follows by the induction hypothesis.

If y_{z-1} \in l_1, then we can replace the path l_2 such that a, l_1, y_{z-1}, y_{z-1} \ast d_z, d_z, l_2, x_{r, j-1} and also we can replace the path l_3 such that d_z, l_3, a, l_3 is still l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 3. So, the result follows by the induction hypothesis.

If y_{z-1} \in l_1, then we can replace the path l_2 such that d_z, l_3, b and also we can replace the path l_3 such that b, l_3, y_{z-1}, y_{z-1} \ast d_z, d_z, l_2, x_{r, j-1}, l_1 is still l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 11. So, the result follows by the induction hypothesis.

Case 11. l_1 is connecting from a to a, l_2 is connecting from d_z to b, and l_3 is connecting from b to x_{r, j-1}.

In this case, if y_{z-1} \in l_1, then we can replace the path l_2 such that d_z, l_2, d_z \ast y_{z-1}, y_{z-1}, l_2, b, l_1 and l_3 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 11. So, the result follows by the induction hypothesis.

If y_{z-1} \in l_1, then we can replace the path l_2 such that a, l_1, y_{z-1}, y_{z-1} \ast d_z, d_z, l_2, b, l_1 and l_3 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 9. So, the result follows by the induction hypothesis.

If y_{z-1} \in l_1, then we can replace the path l_2 such that y_{z-1}, l_2, x_{r, j-1}, y_{z-1} \ast d_z, d_z, l_2, b, l_1 is still l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 10. So, the result follows by the induction hypothesis.

So, Subclaim 3 follows.

Since V(P) is finite, the sequence of sets D_0 \subseteq D_1 \subseteq \cdots must be constant from some point onwards. Let D be the final sets.

By Subclaim 3, we can get the fact that there does not exist two distinct vertices m and n such that m \in D and n \in B in P, for i = 1, \ldots, k-1, i \neq i'.

Since |Fr(B)| = k-1, |Fr(D)| \leq k. Also, by Subclaim 3, we can get the fact that there does not exist two distinct vertices m' and n' in P_{k-1} such that m' \in D and n' \in A. Therefore, we can get the fact that |Fr(D)| \leq k-2. In this case, Fr(D) \cup \{x_{r-1, m-1}\} is a cutset separating H from a, or H from b, and its cardinality is at most k-1, which is contrary to the connectivity of G. So, Claim 2 follows.

We must consider two cases for k.

Case 1. k is even.

The number of segments P_i is k-1. In this case, since k-1 is odd, and by Claim 2, either |Fr(A)| \leq k-2 or |Fr(B)| \leq k-2. But either Fr(A) \cup \{x_i\} or Fr(B) \cup \{x_{i-1, m_i}\} is a cutset separating a from b. Thus G has a cutset of cardinality at most k-1, which is contrary to the connectivity of G.
Case 2. k is odd.

Since $k - 1$ is even, we only consider the case that both $|Fr(A)|$ and $|Fr(B)|$ are $k - 1$. That is, there exist at least two vertices in A or in B for all P_i.

Since k is odd and $G - L$ is connected, there exists at least one path which is connecting from some segment P_i which have two vertices of A, to some other segment P_j which have two vertices of B. Let $l = x_{r,i} * x_{r,k}$.

Note that $x_{r,i}$ is not in Int(A) and $x_{r,k}$ is not in Int(B). $P(l)$ denotes a path along P from $x_{r,i}$ to $x_{r,k}$, and also, $P'(l)$ denotes a path $P(l) \setminus \{x_{r,i}, x_{r,k}\}$.

We prove the following facts.

Fact 1. $i' < i''$.

Proof. Assume not. We consider three cases.

Case 1. The path $x_{r,i+1}, P_r, x_{r,m}$ contains a vertex $a_c \in A_c$ and the path $x_{r,i+1}, P_r, x_{r,k-1}$ contains a vertex $b_y \in B_y$.

In this case, we can take two paths a, b, b_y and a_c, P, b, and a cycle $x_{r,k}, P, x_{r,j_1}, x_{r,j} * x_{r,k}, x_{r,k}$, which satisfy Subclaim 1. So, the result follows.

Case 2. The path $x_{r,1}, P_r, x_{r,j-1}$ contains a vertex $a_c \in A_c$ and the path $x_{r,1}, P_r, x_{r,k-1}$ contains a vertex $b_y \in B_y$.

Since a and b are symmetric, we consider only the case that the path $x_{r,1}, P_r, x_{r,j-1}$ contains a vertex $a_c \in A_c$ and the path $x_{r,1}, P_r, x_{r,k-1}$ contains a vertex $b_y \in B_y$.

Then we can take two paths a, b_y and $a_c, P, x_{r,k}, x_{r,k} * x_{r,j}, x_{r,j}, P, b$, which satisfy Claim 1. So, the result follows.

Case 3. The path $x_{r,1}, P_r, x_{r,j-1}$ contains a vertex $a_c \in A_c$ and the path $x_{r,k+1}, P_r, x_{r,m}$ contains a vertex $b_y \in B_y$.

In this case, we can take two paths $a, b, x_{r,k}, x_{r,k} * x_{r,j_1}, x_{r,j}, P, b$ and b, P, a_c, which satisfy Claim 1. So, the result follows.

Fact 2. There does not exist a vertex $a_c \in A_c$ in $x_{r,j+1}, P_r, x_{r,m}$, and there does not exist a vertex $b_y \in B_y$ in $x_{r,1}, P_r, x_{r,k-1}$.

Proof. Assume not. Since a and b are symmetric, so we consider only the case that there exists a vertex $a_c \in A_c$ in $x_{r,j+1}, P_r, x_{r,m}$. We consider two cases.

Case 1. There exists a vertex $b_y \in B_y$ in $x_{r,1}, P_r, x_{r,k-1}$.

In this case, we can take two paths $a, b, x_{r,j_1}, x_{r,j} * x_{r,k}, x_{r,k}, P, b$ and a_c, P, b_y, which satisfy Claim 1. So, the result follows.
Case 2. There exists a vertex \(b_j \in B_j \) in \(x_{r',k+1}, P_{r'}, x_{r,m'} \).

In this case, we can take two paths \(a, P, x_{r,j'}, x_{r,j} \ast x_{r,k}, x_{r',k}, \bar{P}, a \) and \(b_j, P, b_j \), which satisfy Claim 1. So, the result follows.

We choose a path \(l \) and \(P \) so that \(N(x_{r,j}, x_{r,k}) \) is as large as possible. We prove the following claim.

Claim 3. \(N(x_{r,j}, x_{r,k}) \geq 2 \).

Proof. Assume to the contrary, that is, \(N(x_{r,j}, x_{r,k}) = 1 \). We may assume that there exists a vertex \(u \) in \(x_{r,j+1}, P_{r'}, x_{r,m'} \) or there exists a vertex \(v \) in \(x_{r,1}, P_{r'}, x_{r,k-1} \). For otherwise, if \(j = m_r \) and \(k = 1 \), then \(|l| \geq 3 \).

So, there must exist a vertex \(w \) in \(\{x_{r,j}, x_{r,k}\} \). But, \(\{x_{r,j}, x_{r,k}\} \) is a cutset separating \(w \) from \(a \), or \(w \) from \(b \), and since \(k \geq 4 \), the result easily follows.

Since \(a \) and \(b \) are symmetric, we may assume that there exists a vertex \(u \) in \(x_{r,j+1}, P_{r'}, x_{r,m'} \). Let \(U \) be the set of vertices in \(x_{r,j+1}, P_{r'}, x_{r,m'} \).

We re-choose a path \(l \) and \(P \) so that \(N(x_{r,j}, x_{r,k}) \) is as large as possible, and subject to that condition, \(|x_{r,1}, P_{r'}, x_{r,k}| \) is as small as possible, but \(U \neq \emptyset \). Note that the proofs before Claim 3 do not depend on the choice of \(P \).

Let \(H_0 \) be

\[
H_0 := I(U, U) \cup \{x_{r,j}\}
\]

and for \(z \geq 1 \), let \(H_z \) be

\[
H_z := H_{z-1} \cup I(\text{Int}(H_{z-1}), U).
\]

\(H_{-1} \) will be interpreted as \(\emptyset \).

Suppose \(h_i \in H_y \) and \(b_j \in B_y \), \(a_k \in A_y \) for some \(x, y \geq 0 \).

We prove the following subclaim.

Subclaim 4. If there exist three paths \(l_1, l_2, \) and \(l_3 \) in the following cases:

Case 1. \(l_1 \) is connecting from \(a \) to \(x_{r,j+1}, l_2 \) is connecting from \(h_i \) to \(b_j \), and \(l_3 \) is connecting from \(a_k \) to \(b \).

Case 2. \(l_1 \) is connecting from \(a \) to \(x_{r,j+1}, l_2 \) is connecting from \(h_i \) to \(b_j \), and \(l_3 \) is connecting from \(a_k \) to \(b_j \).

Case 3. \(l_1 \) is connecting from \(a \) to \(x_{r,j+1}, l_2 \) is connecting from \(h_i \) to \(a_k \), and \(l_3 \) is connecting from \(b_j \) to \(b \).

Case 4. \(l_1 \) is connecting from \(a \) to \(h_i, l_2 \) is connecting from \(a_k \) to \(x_{r,j+1}, \) and \(l_3 \) is connecting from \(b_j \) to \(b \).
Case 5. l_1 is connecting from a to h_x, l_2 is connecting from a_x to b_y, and l_3 is connecting from b to $x_{r, j+1}$.

Case 6. l_1 is connecting from a to b_y, l_2 is connecting from h_x to $x_{r, j+1}$, and l_3 is connecting from a_x to b.

Case 7. l_1 is connecting from a to b_y, l_2 is connecting from h_x to a_x, and l_3 is connecting from b to $x_{r, j+1}$.

Case 8. l_1 is connecting from a to b_y, l_2 is connecting from h_x to b, and l_3 is connecting from a_x to $x_{r, j+1}$.

Case 9. l_1 is connecting from a to a_x, l_2 is connecting from h_x to b_y, and l_3 is connecting from b to $x_{r, j+1}$.

Case 10. l_1 is connecting from a to a_x, l_2 is connecting from h_x to b_y, and l_3 is connecting from b to $x_{r, j+1}$.

Case 11. l_1 is connecting from a to h_x, l_2 is connecting from b_y to $x_{r, j+1}$, and l_3 is connecting from a_x to b.

And also, $l_1 \cup l_2 \cup l_3$ satisfies the following conditions:

(S1) $l_1 \cup l_2 \cup l_3$ includes all the edges in L and all the vertices in $\text{Int}(A_{z-1})$, in $\text{Int}(B_{p-1})$, in $\text{Int}(H_{z-1})$ and in U.

(S2) The only vertices of $l_1 \cup l_2 \cup l_3$, not in P occur in segment of $l_1 \setminus L$, $l_2 \setminus L$, and $l_3 \setminus L$ of the form $w, w \ast r, r$, where w and r are both in P but not both in H_z.

(S3) For each of the paths of $l_1 \setminus L, l_2 \setminus L$ and $l_3 \setminus L$, say Q_i, and each $z \leq z-1$, if there is a vertex q such that $q \in Q_i \cap \text{Int}(H_z)$, then there are two vertices of $\text{Fr}(H_z)$ occurring before and after q along Q_i, and each of the vertices between them along Q_i is in $\text{Int}(H_z)$ and if Q_i contains $x_{r, j}$, then, $x_{r, j}$ is adjacent to U in Q_i and Q_i contains the segment $x_{r, j+1}$, $P_{r, x_{r, m}}$.

Then there exist one or two disjoint circuits that contain all the edges in L.

Proof. We prove Subclaim 4 by induction on z. Suppose $z = 0$.

Let T_z be a path from U to h_0. Also, let q be the vertex such that $T_z = q \ast h_0$. T_z does not intersect any segment $w, w \ast r, r$ in l_1, or in l_2 or in l_3 with w and r in P except for its end vertices h_0 and q. For otherwise, both w and r are in H_0, contrary to (S2). By the condition (S2), there exists the vertex $x_{r, j+1}$, which is preceding or succeeding q such that the segment $q, l_1, x_{r, j+1}$ or $x_{r, j+1}, l_1, q$ or $q, l_2, x_{r, j+1}$ or $x_{r, j+1}, l_2, q$ or $q, l_3, x_{r, j+1}$ or $x_{r, j+1}, l_3, q$ does not contain edges in L. Also, by the condition (S3), it is easy to check that the segment $q, l_1, x_{r, j+1}$ or $x_{r, j+1}, l_1, q$ or $q, l_2, x_{r, j+1}$ or $x_{r, j+1}, l_2, q$ or $q, l_3, x_{r, j+1}$ or $x_{r, j+1}, l_3, q$ does not contain vertices in $\text{Int}(A_{z-1}) \cup \text{Int}(B_{p-1})$.

We consider eleven cases for l_1, l_2, and l_3.

Case 1. l_1 is connecting from a to $x_{r, j+1}$, l_2 is connecting from h_0 to b_y, and l_3 is connecting from a_x to b.
In this case, we get two paths \(a, l_1, q, q \ast h_0, h_0, l_2, b_x \) and \(l_3 \) which satisfy Claim 1, and hence, the result follows.

Case 2. \(l_1 \) is connecting from \(a \) to \(x_r, j_x + 1 \), \(l_2 \) is connecting from \(h_0 \) to \(b_x \), and \(l_3 \) is connecting from \(a_s \) to \(b_y \).

In this case, we get two paths \(a, l_1, q, q \ast h_0, h_0, l_2, b_x \) and \(l_3 \) which satisfy Claim 1, and hence, the result follows.

Case 3. \(l_1 \) is connecting from \(a \) to \(x_r, j_x + 1 \), \(l_2 \) is connecting from \(h_0 \) to \(a_s \), and \(l_3 \) is connecting from \(b_y \) to \(b \).

In this case, we get two paths \(a, l_1, q, q \ast h_0, h_0, l_2, a_s \) and \(l_3 \) which satisfy Claim 1, and hence, the result follows.

Case 4. \(l_1 \) is connecting from \(a \) to \(h_0 \), \(l_2 \) is connecting from \(a_s \) to \(x_r, j_x + 1 \), and \(l_3 \) is connecting from \(b_y \) to \(b \).

In this case, we get two paths \(a, l_1, h_0, h_0 \ast q, q, \bar{r}_x, a_s \) and \(l_3 \) which satisfy Claim 1, and hence, the result follows.

Case 5. \(l_1 \) is connecting from \(a \) to \(h_0 \), \(l_2 \) is connecting from \(a_s \) to \(b_y \), and \(l_3 \) is connecting from \(b_y \) to \(x_r, j_x + 1 \).

In this case, we get two paths \(a, l_1, h_0, h_0 \ast q, q, \bar{r}_x, b \) and \(l_2 \) which satisfy Claim 1, and hence, the result follows.

Case 6. \(l_1 \) is connecting from \(a \) to \(b_y \), \(l_2 \) is connecting from \(h_0 \) to \(x_r, j_x + 1 \), and \(l_3 \) is connecting from \(a_s \) to \(b \).

In this case, we get a cycle \(h_0, l_2, q, q \ast h_0, h_0 \) and two paths \(l_1 \) and \(l_3 \), which satisfy Subclaim 1, and hence, the result follows.

Case 7. \(l_1 \) is connecting from \(a \) to \(b_y \), \(l_2 \) is connecting from \(h_0 \) to \(a_s \), and \(l_3 \) is connecting from \(b \) to \(x_r, j_x + 1 \).

In this case, we get two paths \(l_1 \) and \(a_s, \bar{r}_x, h_0, h_0 \ast q, q, \bar{r}_x, b \) which satisfy Claim 1, and hence, the result follows.

Case 8. \(l_1 \) is connecting from \(a \) to \(b_y \), \(l_2 \) is connecting from \(h_0 \) to \(b \), and \(l_3 \) is connecting from \(a_s \) to \(x_r, j_x + 1 \).

In this case, we get two paths \(l_1 \) and \(b, \bar{r}_x, h_0, h_0 \ast q, q, \bar{r}_x, a \) which satisfy Claim 1, and hence, the result follows.

Case 9. \(l_1 \) is connecting from \(a \) to \(a_s \), \(l_2 \) is connecting from \(h_0 \) to \(b \), and \(l_3 \) is connecting from \(b_y \) to \(x_r, j_x + 1 \).

In this case, we get two paths \(l_1 \) and \(b, \bar{r}_x, h_0, h_0 \ast q, q, \bar{r}_x, b \) which satisfy Claim 1, and hence, the result follows.

Case 10. \(l_1 \) is connecting from \(a \) to \(a_s \), \(l_2 \) is connecting from \(h_0 \) to \(b_y \), and \(l_3 \) is connecting from \(b \) to \(x_r, j_x + 1 \).
In this case, we get two paths \(l_1 \) and \(b_y, T_z, h_0, h_0 \cdot q, q, T_z, b \) which satisfy Claim 1, and hence, the result follows.

Case 1. \(l_1 \) is connecting from \(a \) to \(h_0 \), \(l_2 \) is connecting from \(b_y \) to \(x_{i_{j+1}} \), and \(l_3 \) is connecting from \(a \) to \(b \).

In this case, we get two paths \(l_1 \) and \(a, l_1, h_0, h_0 \cdot q, q, T_z, b_y \) which satisfy Claim 1, and hence, the result follows.

Suppose \(z > 0 \). If \(h \in H_{z-1} \), the result follows by induction hypothesis. So, we may assume \(h \in H_1 \setminus H_{z-1} \). We can choose a path \(h \cdot y_{z-1} \) connecting \(h \) to \(y_{z-1} \), where \(y_{z-1} \in \text{Int}(H_{z-1}) \). This path does not intersect any segment \(w, w \cdot r, r \cdot l_1 \) or in \(l_2 \) or in \(l_3 \) with \(w \) and \(r \) in \(P \) except for its end vertices \(h \) and \(y_{z-1} \). For otherwise, both \(w \) and \(r \) are in \(H_z \), contrary to \((S_f)\). By the condition \((S_f)\), there exists a vertex \(h_{z-1} \in H_{z-1} \) which is preceding \(y_{z-1} \) such that the segment \(h_{z-1}, l_1, y_{z-1} \) or \(h_{z-1}, l_2, y_{z-1} \) or \(h_{z-1}, l_3, y_{z-1} \) does not contain edges in \(L \). Now we choose a vertex \(h_f \) which is the last vertex before \(y_{z-1} \) along \(l_1 \) (if \(y_{z-1} \in l_1 \)) or along \(l_2 \) (if \(y_{z-1} \in l_2 \)) or along \(l_3 \) (if \(y_{z-1} \in l_3 \)) and \(h_f \) is in \(\text{Fr}(H_f) \) for any \(z' < z-1 \), and choose \(z' \) minimal so that \(h_f \notin \text{Cl}(H_{z-1}) \). Also, by the condition \((S_f)\), there exists a vertex \(h'_{z-1} \in H_{z-1} \) which is succeed- ing \(y_{z-1} \) such that the segment \(h_{z-1}, l_1, h'_{z-1}, l_2, h', l_3, y_{z-1} \) does not contain edges in \(L \). Now we choose a vertex \(h_f' \) which is the last vertex after \(y_{z-1} \) along \(l_1 \) (if \(y_{z-1} \in l_1 \)) or along \(l_2 \) (if \(y_{z-1} \in l_2 \)) or along \(l_3 \) (if \(y_{z-1} \in l_3 \)) and \(h_f' \) is in \(\text{Fr}(H_f) \) for any \(z' < z-1 \), and choose \(z' \) minimal so that \(h_f' \notin \text{Cl}(H_{z-1}) \). We will write \(h_f' \) instead of \(h_f' \) since it may not be confusing for readers.

Then there does not exist a vertex that is in \(\text{Int}(H_{z-1}) \) in the segments both \(y_{z-1}, h, h', l_1, y_{z-1} \) (if \(y_{z-1} \in l_1 \)), or both \(y_{z-1}, h, h', l_2, y_{z-1} \) (if \(y_{z-1} \in l_2 \)), or both \(y_{z-1}, h, h', l_3, y_{z-1} \) (if \(y_{z-1} \in l_3 \)).

We may assume that there are no vertices in \(\text{Int}(A) \cup \text{Int}(B) \) in the segments both \(y_{z-1}, h, h$, and \(h, l_1, y_{z-1} \) (if \(y_{z-1} \in l_1 \)), or both \(y_{z-1}, l_2, h, h$, \(y_{z-1} \)) (if \(y_{z-1} \in l_2 \)), or both \(y_{z-1}, l_3, h, h$, \(y_{z-1} \)) (if \(y_{z-1} \in l_3 \)). For otherwise, there exist some \(P_i \) of \(P \) which contains distinct vertices \(r, w \) such that \(r \in H_z \) and \(w \in A \cup B \). But, in this case, we can take three paths which satisfy the case \(z' \). Hence the result follows by the induction hypothesis.

Now we consider eleven cases for \(l_1, l_2, \) and \(l_3 \).

Case 1. \(l_1 \) is connecting from \(a \) to \(x_{i_{j+1}} \), \(l_2 \) is connecting from \(h_0 \) to \(b_y \), and \(l_3 \) is connecting from \(a \) to \(b \).

In this case, if \(y_{z-1} \in l_1 \), then we can replace the path \(l_2 \) such that \(h_0, \) \(T_z, h_0, h_0 \cdot q, q, T_z, b \) and \(l_1 \) are still \(l_1 \) and \(l_2 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(z' \) of Case 1. So, the result follows by the induction hypothesis.

If \(y_{z-1} \in l_1 \), then we can replace the path \(l_1 \) such that \(h, l_3, y_{z-1}, y_{z-1} \cdot h, h, l_2, b_y \) and also we can replace the path \(l_1 \) such that \(h, l_3, x_{i_{j+1}}, l_3 \) is \(l_3 \).
These three paths l_1, l_2, and l_3 satisfy the case z' of Case 6. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_2 such that h_z, T_z, a, and also we can replace the path l_1 such that $b_1, T_z, h_z, h_z \cdot y_{z-1}, y_{z-1}, l_1, b, l_1$ is still l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 3. So, the result follows by the induction hypothesis.

Case 2. l_1 is connecting from a to $x_{r,j+1}$, l_2 is connecting from h_z to b, and l_3 is connecting from a_s to b_s.

In this case, if $y_{z-1} \in l_2$, then we can replace the path l_2 such that $h_z, T_z, h_z, h_z \cdot y_{z-1}, y_{z-1}, l_2, b, l_1$ and l_1 are still l_1 and l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 2. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_1 such that a, l_1, h_z, and also we can replace the path l_1 such that $b, T_z, h_z, h_z \cdot y_{z-1}, y_{z-1}, l_1, x_{r,j+1}$, l_2 is l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 5. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_2 such that h_z, T_z, a, and also we can replace the path l_1 such that $b_1, T_z, y_{z-1}, y_{z-1}, h_z, h_z, l_2, b, l_1$ is still l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 3. So, the result follows by the induction hypothesis.

Case 3. l_1 is connecting from a to $x_{r,j+1}$, l_2 is connecting from h_z to a_s, and l_3 is connecting from b_s to b.

In this case, if $y_{z-1} \in l_2$, then we can replace the path l_2 such that $h_z, T_z, h_z, h_z \cdot y_{z-1}, y_{z-1}, l_2, a_s, l_1$ and l_1 are still l_1 and l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 3. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_1$, then we can replace the path l_2 such that $a_s, T_z, h_z, h_z \cdot y_{z-1}, y_{z-1}, l_1, x_{r,j+1}$, l_2, b, l_1 is still l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 4. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_2 such that h_z, T_z, b_s, and also we can replace the path l_1 such that $a_s, T_z, h_z, h_z \cdot y_{z-1}, y_{z-1}, l_3, b, l_1$ is still l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 1. So, the result follows by the induction hypothesis.

Case 4. l_1 is connecting from a to h_z, l_2 is connecting from a_s to $x_{r,j+1}$, and l_3 is connecting from b_s to b.

In this case, if $y_{z-1} \in l_1$, then we can replace the path l_1 such that $a, l_1, y_{z-1}, l_1, y_{z-1}, h_z \cdot T_z, h_z, l_2$ and l_2 are still l_2 and l_2. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 4. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_2$, then we can replace the path l_1 such that $a, l_1, h_z, h_z \cdot y_{z-1}, y_{z-1}, l_2, x_{r,j+1}$ and also we can replace the path l_2 such that h_z, T_z, a_s, l_3 is
still l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 3. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_2 that h_z, l_3, b and also we can replace the path l_1 such that a, l_1, h_z, $h_z \ast y_{z-1}$, y_{z-1}, \bar{T}_z, b, l_1 is l_2. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 3. So, the result follows by the induction hypothesis.

Case 5. l_1 is connecting from a to h_z, l_2 is connecting from a_x to b_y, and l_3 is connecting from b to $x_{r,j+1}$.

In this case, if $y_{z-1} \in l_1$, then we can replace the path l_1 such that a, l_1, y_{z-1}, y_{z-1}, h_z, h_z * h_z, h_z, l_2 and l_1 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 5. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_2$, then we can replace the path l_1 such that a * y_{z-1}, y_{z-1}, h_z, h_z * h_z, h_z, l_2 and l_1 is still l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 5. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_2 that h_z, \bar{T}_z, b and also we can replace the path l_1 such that a, l_1, h_z, h_z * y_{z-1}, y_{z-1}, l_3, $x_{r,j+1}$, l_1 is l_2. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 5. So, the result follows by the induction hypothesis.

Case 6. l_1 is connecting from a to b_y, l_2 is connecting from h_z to $x_{r,j+1}$, and l_3 is connecting from a_x to b.

In this case, if $y_{z-1} \in l_2$, then we can replace the path l_2 such that h_z, \bar{T}_z, h_z, h_z * y_{z-1}, y_{z-1}, l_2, $x_{r,j+1}$, l_1 and l_1 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 6. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_2 such that h_z, l_1, b_y and also we can replace the path l_1 such that a, l_1, y_{z-1}, y_{z-1}, h_z, h_z, l_2, $x_{r,j+1}$, l_1 is l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 6. So, the result follows by the induction hypothesis.

Case 7. l_1 is connecting from a to b_y, l_2 is connecting from h_z to a_x, and l_3 is connecting from b to $x_{r,j+1}$.

In this case, if $y_{z-1} \in l_2$, then we can replace the path l_2 such that h_z, \bar{T}_z, h_z, h_z * y_{z-1}, y_{z-1}, l_2, a_x and l_1 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 7. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_1 that a, l_1, h_z and also we can replace the path l_2 such that a_x, \bar{T}_z, h_z, h_z * y_{z-1}, y_{z-1}, l_3, l_3, b_y, l_3 is still l_3. So, the result follows by the induction hypothesis.
These three paths l_1, l_2, and l_3 satisfy the case z' of Case 5. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_1$, then we can replace the path l_2 such that h_z, Γ_z, b and also we can replace the path l_3 such that a_s, Γ_s, $h_z \cdot y_{z-1}$, y_{z-1}, l_1, $x_{r_{j+1}}$, l_3 is still l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 8. So, the result follows by the induction hypothesis.

Case 8. l_1 is connecting from a to b_y, l_2 is connecting from h_z to b, and l_3 is connecting from a_s to $x_{r_{j+1}}$.

In this case, if $y_{z-1} \in l_2$, then we can replace the path l_2 such that h_z, Γ_z, h_z, $h_z \cdot y_{z-1}$, y_{z-1}, l_2, b, l_1 and l_3 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 8. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_1$, then we can replace the path l_3 such that b_y, Γ_y, y_{z-1}, $y_{z-1} \cdot h_z$, h_z, l_2, b, l_1 and l_3 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 9. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$ then we can replace the path l_2 such that h_z, Γ_z, $h_z \cdot y_{z-1}$, y_{z-1}, l_2, b, l_1 and l_3 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 9. So, the result follows by the induction hypothesis.

Case 9. l_1 is connecting from a to b_y, l_2 is connecting from h_z to b, and l_3 is connecting from b_y to $x_{r_{j+1}}$.

In this case, if $y_{z-1} \in l_2$, then we can replace the path l_2 such that h_z, Γ_z, h_z, $h_z \cdot y_{z-1}$, y_{z-1}, l_2, b, l_1 and l_3 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 10. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_1$, then we can replace the path l_3 such that a_s, Γ_s, y_{z-1}, $y_{z-1} \cdot h_z$, h_z, l_2, b, l_1 and also we can replace the path l_3 such that a_s, l_1, $y_{z-1} \cdot h_z$, h_z, l_2, b, l_1 is still l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 11. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_2 such that b_y, Γ_y, h_z, $h_z \cdot y_{z-1}$, y_{z-1}, l_3, $x_{r_{j+1}}$, l_1 is still l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 10. So, the result follows by the induction hypothesis.

Case 10. l_1 is connecting from a to b_y, l_2 is connecting from h_z to b_y, and l_3 is connecting from b_y to $x_{r_{j+1}}$.

In this case, if $y_{z-1} \in l_2$, then we can replace the path l_2 such that h_z, Γ_z, h_z, $h_z \cdot y_{z-1}$, y_{z-1}, l_2, b_y, l_1 and l_3 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 10. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_1$, then we can replace the path l_2 such that a_s, Γ_s, y_{z-1}, $y_{z-1} \cdot h_z$, h_z, l_2, b_y and also we can replace the path l_1 such that a_s, l_1, h_z.
l_1 is still l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 5. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_2 that h_z, \mathcal{T}_1, b and also we can replace the path l_1 such that b_y, \mathcal{T}_1, h_z, $h_z \ast y_{z-1}$, y_{z-1}, l_3, $x_{r, j+1}$, l_1 is still l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 9. So, the result follows by the induction hypothesis.

Case 11. l_1 is connecting from a to h_z, l_2 is connecting from b_y to $x_{r, j+1}$, and l_3 is connecting from a_z to b.

In this case, if $y_{z-1} \in l_1$, then we can replace the path l_1 that a, l_1, y_{z-1}, $y_{z-1} \ast h_z$, h_z, \mathcal{T}_1, h_z, l_2 and l_1 are still l_2 and l_1. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 11. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_2$, then we can replace the path l_1 such that a, l_1, y_{z-1}, $y_{z-1} \ast h_z$, h_z, \mathcal{T}_1, h_z, l_2, y_{z-1} and also we can replace the path l_2 such that h_y, \mathcal{T}_1, b_y, l_3 is still l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 1. So, the result follows by the induction hypothesis.

If $y_{z-1} \in l_3$, then we can replace the path l_1 that a, l_1, h_z, $h_z \ast y_{z-1}$, y_{z-1}, l_2, $x_{r, j+1}$, a_z, and also we can replace the path l_2 such that h_y, l_1, l_1, l_3 is l_3. These three paths l_1, l_2, and l_3 satisfy the case z' of Case 9. So, the result follows by the induction hypothesis.

So, Subclaim 4 follows.

Since $V(P)$ is finite, the sequence of sets $H_0 \subseteq H_1 \subseteq \cdots$ must be constant from some point onwards. Let H be the final sets.

Subclaim 4 implies that there do not exist two distinct vertices h_i and b_y in P_i for $i < i'$. For otherwise, choose z minimal and consider three paths as follows:

(a) a, P, b_y and h_z, P, a_z and $x_{r, j+1}$, P, b.

(b) a, P, h_z and b_y, P, a_z and $x_{r, j+1}$, P, b.

But, by Subclaim 4, such three paths do not exist.

Also, Subclaim 4 implies that if there exist two distinct vertices h_i and b_y in P_i for $i > i''$, then a, P, b_y is longer than a, P, h_z. For otherwise, choose z minimal, and consider three paths as follows:

(c) a, P, a_z and $x_{r, j+1}$, P, b_y and h_z, P, b.

But, by Subclaim 4, such three paths do not exist.

Subclaim 4 also implies that there do not exist two distinct vertices h_i and a_z in P_i for $i > i''$. For otherwise, choose z minimal and consider three paths as follows:
(d) \(a, P, x_{r,j}, x_{r',k}, x_{r',l}, P, x_{r',j+1} \) and \(b, P, h_i \) and \(a_s, P, b \).

(e) \(a, P, x_{r,j}, x_{r',k}, x_{r',l}, P, x_{r',j+1} \) and \(b, P, a_s, h_i, P, b \).

But, by Subclaim 4, such three paths do not exist.

Now we observe the case that there exist two distinct vertices \(h_e \in H_e \) and \(h_{e} \in H_{e'} \) in \(P_i \) for \(i > l' \). Assume \(h_e \in H_e \) and \(h_{e} \in H_{e'} \) in \(P_i \) for some \(i > l' \) and suppose \(a, P, h_i \) is shorter than \(a, P, h_{e} \). By (c), \(a, P, h_i \) is shorter than \(a, P, b \). We choose \(z \) and \(z' \) minimal. First we observe the vertex \(h_i \) (if \(z > z' \), we assume \(h_i \) as \(h_i \)). If \(z = 0 \), then there must a path \(h \ast h_0 \), where \(h \in U \). But this contradicts the maximality of \(N(x_{r,j}, x_{r,k}) \). So, we may assume \(z > 0 \). We can choose a path \(h_i \ast y_{z-1} \) connecting \(h_i \) to \(y_{z-1} \), where \(y_{z-1} \in \text{Int}(H_{z-1}) \). We may assume \(s \neq i', l' \).

The following statement holds.

(I) \(y_{z-1} \neq P_i, \) for \(s < l' \).

For otherwise, if \(y_{z-1} \in P_i \) for \(s < l' \), then we can choose a vertex \(h_{z-1} \) such that \(h_{z-1}, P, y_{z-1} \) does not contain edges in \(L \). Then we can take three paths \(a, P, h_i \) and \(x_{r,j+1} \), \(P, h_i, h_j, y_{z-1}, P, a_s \) and \(b, P, b \) which satisfy Subclaim 4, a contradiction. So, the result follows.

And also, the following statement holds.

(II) If \(y_{z-1} \in P_i \) for \(s > l' \), then \(a, P, y_{z-1} \) is shorter than \(a, P, h_i \).

For otherwise, if \(y_{z-1} \in P_i \) for \(s > l' \) and \(a, P, y_{z-1} \) is longer than \(a, P, h_i \), then we can choose a vertex \(h_{z-1} \) such that \(h_{z-1}, P, y_{z-1} \) does not contain edges in \(L \). Then we can take three paths \(a, P, a_s \) and \(x_{r,j+1}, P, h_i, h_j, y_{z-1}, P, a_s, b \) and \(b \) which satisfy Subclaim 4, a contradiction. So, the result follows.

Now, we consider the case that \(y_{z-1} \in P_i \) for \(s > l' \) and \(a, P, y_{z-1} \) is shorter than \(a, P, h_i \). Suppose \(z < z' \). Then we can take \(b \in B \) such that \(b, P, y_{z-1} \) does not contain edges in \(L \). In this case, we can take three paths \(a, P, h_i, P, y_{z-1}, P, a_s, y_{z-1}, \tilde{P}, b \) and \(b \) which satisfy Subclaim 4 unless \(h_i \) "comes" from \(\text{Int}(B) \cap V(P_i) \). (The word "come" means that there exists a vertex \(y_{z-1} \in \text{Int}(B) \cap V(P_i) \) such that if we remove the vertex \(y_{z-1} \), then \(h_i \) does not exist.) But in this worst case, either we have three vertex disjoint paths which satisfy Subclaim 4 or both \(h_i \) and \(h_i \) "come" from \(y_{z-1} \) if we choose \(P \) suitably. (We call such vertex "bad.")

The case \(z > z' \) follows from the similar way because we can take three paths \(a, P, x_{r,j+1}, P, y_{z-1}, h_i, P, b \) and \(b \).

So, we may assume that there do not exist two vertices \(h_e \in H_e \) in \(P_i \) for \(i > l' \) or if exist, then there exists a bad vertex. This implies that if we remove all bad vertices, we may assume that there exist no two distinct vertices \(h_e \in H_e \) and \(h_{e} \in H_{e'} \) in \(P_i \) for \(i > l' \).
By the maximality of $N(x_{r,j}, x_{r,k})$ and the fact that we may assume that there do not exist two vertices $h'_i \in H'_i$ and $h''_i \in H''_i$ in P_i for $i < i'$ or there exists a bad vertex, if there exists a vertex $h_i \in H_i$ in P_i for $i > i''$ after deleting all bad vertices, then we can choose a path $h_i \ast y_{z-1}$ connecting h_i to y_{z-1}, where $y_{z-1} \in \Int(H_{z-1})$, and y_{z-1} must be in $\Int_r(H_{z-1})$. We consider two cases whether $\Int_r(H_0) = \emptyset$ or not.

Case 1. $\Int_r(H_0) = \emptyset$.

In this case, there does not exist a vertex $h_i \in H_i$ in P_i for $i > i''$. Since $|\Fr(B)| = k-1$, so $|\Fr(H)| \leq k + 1$. Also, by Subclaim 4, we can get the fact that there does not exist two distinct vertices m' and n' in P_{k-1} such that $m' \in H$ and $n' \in A$. Therefore, we can get the fact that $|\Fr(H)| \leq k - 1$.

We claim that $\Fr_r(H) = \{x_{r,j}\}$. For otherwise, if there exists a vertex $h_i \in H_i$ in P_i and a, P, h_i is shorter than a, P, a, a, then we can take three paths a, P, h_i and $x_{r,j+1}, P, x_{r,k}, x_{r,k} \ast x_{r,i}, x_{r,i}, P, a, b, P, b$ which satisfy Subclaim 4, and hence the result follows.

Assume there exists a vertex $h_i \in H_i$ in P_i and a, P, h_i is longer than a, P, a, a. First, we claim $z > 0$. For otherwise, we can take a path $q \ast h_0$, where $q \in H$. But we can take new path P' extending P, that is, $a, P, h_0, h_0 \ast q, q, P, h, a$ and also we can get the fact that $|x_{r,1}, P, h_0|$ is smaller than $|x_{r,1}, P, x_{r,j}|$, which is contrary to the minimality of $|x_{r,1}, P, x_{r,j}|$. So, we may assume $z > 0$. Then we can choose a path $h_i \ast y_{z-1}$ connecting h_i to y_{z-1}, where $y_{z-1} \in \Int_r(H_{z-1})$. And also, we can choose a vertex h_{z-1} such that h_{z-1}, P, y_{z-1} does not contain edges in L. Note that $i < i'$. In this case, we can take three paths $a, P, y_{z-1}, y_{z-1} \ast h_{z-1}, h_{z-1}, P, x_{r,j}, x_{r,j} \ast x_{r,k}, x_{r,k}, P, x_{r,j+1}$ and h_{z-1}, P, a, b, P, b which satisfy Subclaim 4, and hence the result follows.

So, we may assume that $\Fr_r(H) = \{x_{r,j}\}$ and $|\Fr(H)| \leq k - 2$.

In this case, $\Fr(H) \cup \{x_{r,1}\}$ is a cutset separating U from a and also, U from h_i and its cardinality is at most $k-1$, which is contrary to the connectivity of G. Note that the proof of the fact $\Fr_r(H) = \{x_{r,j}\}$ even works when $\Int_r(H_0) \neq \emptyset$ and we delete all bad vertices, since we may assume that there do not exist two vertices $h'_i \in H'_i$ and $h''_i \in H''_i$ in P_i for $i < i'$ or there exists a bad vertex, and hence if we cut all bad vertices, then we do not have to consider the case that there exist two vertices $h'_i \in H'_i$ and $h''_i \in H''_i$ in P_i for $i < i'$.

Case 2. $\Int_r(H_0) \neq \emptyset$.

Let U' be the set of vertices in $\Int_r(H_0)$. Let H'_0 be

$$H'_0 := I(U', U')$$

and for $z \geq 1$, let H'_z be

$$H'_z := H'_{z-1} \cup I(\Int(H'_{z-1}), U').$$
Since \(V(P) \) is finite, the sequence of sets \(H_0' \subseteq H_1' \subseteq \cdots \) must be constant from some point onwards. Let \(H' \) be the final sets. Note that \(H' \subseteq H \cup U \).

Since we may assume that there do not exist two vertices \(h'_i \in H'_i \) and \(h'_j \in H'_j \) in \(P_i \) for \(i < i' \) or there exists a bad vertex, so \(|Fr_{r_i}(H')| \leq 1 \) for any \(i > i'' \) if we delete all bad vertices. And also, by the same argument to apply \(U \) to \(Int_{r_i}(H_0) \), we may also assume that there do not exist two vertices \(h'_i \in H'_i \) and \(h'_j \in H'_j \) in \(P_i \) for \(i < i' \) or there exists a bad vertex. Hence \(|Fr_{r_i}(H')| \leq 1 \) for any \(i > i'' \) if we delete all bad vertices. Therefore, we may assume that \(|Fr_{r_i}(H')| \leq 1 \) for any \(i > i'' \) and \(i < i' \). Moreover, by Subclaims 2 and 4, there does not exist a vertex \(h' \in H' \) in \(P_i \) and in \(P_{k-1} \).

In this case, \(Fr(H') \) is cutset separating \(U' \) from \(a \) and also, \(U' \) from \(b \), and its cardinality is at most \(k-1 \), which is contrary to the connectivity of \(G \) when there exists a vertex of \(U' \) which is not bad.

Finally, assume that all vertices in \(U' \) are bad. Note that we may assume that \(Fr_{r_i}(H') = \{x_{r_i,j}\} \) if we delete all bad vertices. If there exists at least one vertex of \(U \) which is not bad, then \(Fr(H) \cup \{x_{r_i,j}, x_{r_{i+1},j}\} \) is a cutset and its cardinality is, since there does not exist a vertex \(h \in H \) in \(P_1 \) and in \(P_{k-1} \), at most \(k-1 \), which is contrary to the connectivity of \(G \).

Suppose all the vertices in \(U \cup U' \) are bad. Take the vertex \(u' \in U \cup U' \) such that the number of \(P_i \) such that \(|Fr_{r_i}(H_i)| = 2 \) and all the vertices of \(H_i \cap V(P) \) comes from \(u' \) is smallest number among them. If there exists a non-bad vertex \(h' \in Int(H_1) \) whose \(Fr_{r_1}(H_1) \) comes from \(u' \), then by the same argument, we have a \(k-1 \) cutset. Hence we may assume that all the vertices in \(Int(H_1) \) whose \(Fr_{r_1}(H_1) \) come from \(u' \) are bad. But in this case, we also have a \(k-1 \) cutset which separates \(u' \) by using the same argument in the proof of the preceding paragraph. So, Claim 3 follows.

Let \(x_{r,m} \) be \(\sup_r(A) \) and let \(x_{r,n} \) be \(\inf_r(B) \), respectively. Let \(r \) be the vertex \(x_{r,m} \) and let \(s \) be the vertex \(x_{r,n+1} \). We define the sequence \(A'_0 \subseteq A'_1 \subseteq \cdots \) and the sequence \(B'_0 \subseteq B'_1 \subseteq \cdots \) of subsets of \(V(P) \) as

\[
A'_0 := I(\{r\}, \{r\}) \cup \{x_{r,m}\},
B'_0 := I(\{s\}, \{s\}) \cup \{x_{r,n}\}
\]

and, for any \(m, n \geq 1 \),

\[
A'_m := A'_{m-1} \cup I(Int(A'_{m-1}), \{r\}),
B'_m := B'_{m-1} \cup I(Int(B'_{m-1}), \{s\}).
\]

\(A_{-1} \) and \(B_{-1} \) will be interpreted as \(\emptyset \).

Suppose \(b_j \in B_i \) and \(a_k \in A_i \) for some \(x, y \geq 0 \). We prove the following Claim.
Claim 4. The following statements hold.

1. There do not exist two distinct vertices a'_i and b_i in P, such that
 $a'_i \in A_n$ and $b_i \in B_n$, for any $n \geq 0$, for $i = 1, \ldots, k-1$ and for some $y \geq 0$.
2. There do not exist two distinct vertices a_i and b'_m in P, such that
 $a_i \in A_n$ and $b'_m \in B'_m$, for any $m \geq 0$, for $i = 1, \ldots, k-1$ and for some $x \geq 0$.
3. In $P(l)$, there does not exist a vertex a'_i such that $a'_i \in A'_n$ for $n \geq 0$.
4. In $P(l)$, there does not exist a vertex b'_m such that $b'_m \in B'_m$ for $m \geq 0$.

Proof. Since a and b are symmetric, it is sufficient to consider only (1) and (3). If there exist such vertices a'_i and b_i, then choosing n minimal, and considering three paths as follows: If $i < i'$, then

- (a) a, P, b, a'_i, P, r and a_x, P, b.
- (b) a, P, a'_i, b, P, r and a_x, P, b.

If $i > i'$, then

- (c) a, P, r and a_x, P, b, a'_i, P, b.
- (d) a, P, r and a_x, P, a'_i, b, P, b.

If there exists a vertex a'_i in $P(l)$, then choose n minimal and consider three paths as follows:

- (e) a, P, r and $a_x, P, x_{r, k}, x_{r, k}^* x_{r, j}, x_{r, j}, P, a'_i$ and b, P, b.
- (f) a, P, r and $a'_i, P, x_{r, k}, x_{r, k}^* x_{r, j}, x_{r, j}, P, a_x$ and b, P, b.
- (g) a, P, r and a_x, P, b, b and a'_i, P, b.
- (h) a, P, r and a_x, P, a'_i, b, P, b.

If there exists a vertex a'_i in $x_{r, j+1}, P, x_{r, m}$, then choose n minimal and consider three paths as follows:

- (i) a, P, r and $a'_i, P, x_{r, k}, x_{r, k}^* x_{r, j}, x_{r, j}, \bar{P}, a_x$ and b, P, b.

To prove (1) and (3), it is sufficient to prove the following subclaim.

Subclaim 5. If there exist three paths $l_1, l_2,$ and l_3 in the following cases:

- **Case 1.** l_1 is connecting from a to r, l_2 is connecting from a_x to a'_i, and l_3 is connecting from b_x to b.
- **Case 2.** l_1 is connecting from a to r, l_2 is connecting from a_x to b, and l_3 is connecting from a'_i to b.

Case 3. \(l_1 \) is connecting from \(a \) to \(b \), \(l_2 \) is connecting from \(a' \) to \(r \), and \(l_3 \) is connecting from \(a_2 \) to \(b \).

Case 4. \(l_1 \) is connecting from \(a \) to \(b \), \(l_2 \) is connecting from \(a' \) to \(a_2 \), and \(l_3 \) is connecting from \(r \) to \(b \).

Case 5. \(l_1 \) is connecting from \(a \) to \(a' \), \(l_2 \) is connecting from \(b \) to \(r \), and \(l_3 \) is connecting from \(a_2 \) to \(b \).

Case 6. \(l_1 \) is connecting from \(a \) to \(a' \), \(l_2 \) is connecting from \(b \) to \(r \), and \(l_3 \) is connecting from \(a_2 \) to \(b \).

Case 7. \(l_1 \) is connecting from \(a \) to \(a' \), \(l_2 \) is connecting from \(a_2 \) to \(r \), and \(l_3 \) is connecting from \(b \) to \(b \).

Case 8. \(l_1 \) is connecting from \(a \) to \(a' \), \(l_2 \) is connecting from \(a_2 \) to \(a_2 \), and \(l_3 \) is connecting from \(b \) to \(r \).

Case 9. \(l_1 \) is connecting from \(a \) to \(a' \), \(l_2 \) is connecting from \(a_2 \) to \(r \), and \(l_3 \) is connecting from \(a_2 \) to \(b \).

And also, the conditions \((S_i)\) below are satisfied:

\((S_1)\) \(l_1 \cup l_2 \cup l_3 \) includes all the edges in \(L \) and all the vertices in \(\text{Int}(B) \) and in \(\text{Int}(A'_{n-1}) \).

\((S_2)\) The only vertices of \(l_1 \cup l_2 \cup l_3 \) not in \(P \) occur in segment of \(l_1 \setminus L \), \(l_2 \setminus L \) and \(l_3 \setminus L \) of the form \(w \ast x \), where \(w \) and \(x \) are both in \(P \) but not both in \(A'_n \).

\((S_3)\) For each of the paths \(l_1 \setminus L, l_2 \setminus L \) and \(l_3 \setminus L \), say \(Q_i \), and each \(n' \leq n-1 \), if there is a vertex \(q \) such that \(q \in Q_i \cap \text{Int}(A'_n) \), then there are two vertices of \(\text{Fr}(A'_n) \) occurring before and after \(q \) along \(Q_i \), and each of the vertices between then along \(Q_i \) is in \(\text{Int}(A'_n) \).

Then, there exist one or two disjoint circuits which contain all the edges in \(L \).

Proof. We prove Subclaim 5 by induction on \(n \). Suppose that \(n = 0 \).

Let \(T_1 \) be a path \(T_1 = r \ast a_0 \). \(T_1 \) does not intersect any segment \(w, w \ast x \), \(x \) in \(l_1 \) or in \(l_2 \) or in \(l_3 \) with \(w \) and \(x \) in \(P \) except for its end vertices \(a_0 \) and \(r \). For otherwise, both \(a_0 \) and \(r \) are in \(A'_0 \), which is contrary to \((S_2)\).

Suppose \(x_{r \ast w} \in A' \setminus A_{n-1} \). If \(p > x \) or \(\text{Int}_{r}(A) = \emptyset \), then it is easy to see that \(l_1 \cup l_2 \cup l_3 \) contains all the vertices in \(\text{Int}(A_{n-1}) \). Hence we only consider the case \(r \in \text{Int}(A_{n-1}) \) and \(p \leq x \). This implies \(A' = \bigcup_{i=1}^{j} A'_i \subseteq A \). By the inductive argument, \(l_1 \cup l_2 \cup l_3 \) contains all the vertices in \(\text{Int}(A_{n-1}) \) unless \(a_0 \) “comes” from \(\text{Int}(A_{n-1}) \cap V(P_r) \) and \(a_0 \notin V(P_r) \). (The word “come” means that there exists a vertex \(q \in \text{Int}(A) \cap V(P_r) \) such that if we remove the vertex \(q \), then \(a_0 \) does not exist.) But in this worst case, either we have two vertex disjoint paths which satisfy Claim 1 by using the remark of Claim 1 or by using the inductive argument, or both \(a_0 \) and \(a_0 \) “come” from \(r \) (We call such a vertex “bad.”), or we have a \(k-1 \) cutset.
This implies that we may assume that $l_1 \cup l_2 \cup l_3$ contains all the vertices in Int(A_{x-1}) otherwise there exists a $k-1$ cutset, which is contrary to the connectivity.

We consider nine cases for l_1, l_2, and l_3.

Case 1. l_1 is connecting from a to r, l_2 is connecting from a_x to a_0', and l_3 is connecting from b_y to b.

In this case, we can get two paths a_x, l_2, a_0', $a_0' \ast r$, r, T_1, a and l_1 which satisfy Claim 1 and hence, the result follows.

Case 2. l_1 is connecting from a to r, l_2 is connecting from a_x to b_y, and l_3 is connecting from a_0' to b.

In this case, we can get two paths a, l_1, r, $r \ast a_0'$, a_0', l_3, b and l_2 which satisfy Claim 1 and hence, the result follows.

Case 3. l_1 is connecting from a to b_y, l_2 is connecting from a_0' to r, and l_3 is connecting from a_x to b.

In this case, we can get a cycle a_0', l_2, r, $r \ast a_0'$, a_0' and two paths l_1 and l_3 which satisfy Subclaim 1, and hence, the result follows.

Case 4. l_1 is connecting from a to b_y, l_2 is connecting from a_0' to a_x, and l_3 is connecting from r to b.

In this case, we can get two paths a_x, l_2, a_0', $a_0' \ast r$, r, l_3, b and l_1 which satisfy Claim 1, and hence, the result follows.

Case 5. l_1 is connecting from a to a_0', l_2 is connecting from b_y to r, and l_3 is connecting from a_x to b.

In this case, we can get two paths a, l_1, a_0', $a_0' \ast r$, r, T_2, b_y and l_3 which satisfy Claim 1, and hence, the result follows.

Case 6. l_1 is connecting from a to a_0', l_2 is connecting from b to r, and l_3 is connecting from a_x to b_y.

In this case, we can get two paths a, l_1, a_0', $a_0' \ast r$, r, T_2, b and l_3 which satisfy Claim 1, and hence, the result follows.

Case 7. l_1 is connecting from a to a_0', l_2 is connecting from a_x to r, and l_3 is connecting from b_y to b.

In this case, we can get two paths a, l_1, a_0', $a_0' \ast r$, r, T_2, a_x and l_3 which satisfy Claim 1 and hence, the result follows.

Case 8. l_1 is connecting from a to b, l_2 is connecting from a_x to a_0', and l_3 is connecting from b_y to r.
In this case, we can get two paths $a_1, l_2, a'_0, a'_0 \ast r, r, T_3, b$, and l_1 which satisfy Claim 1, and hence, the result follows.

Case 9. l_1 is connecting from a to b, l_2 is connecting from a_1 to r, and l_3 is connecting from a'_0 to b.

In this case, we can get two paths $b, T_3, a_1, a'_0, a'_0 \ast r, r, T_2, a$, and l_1 which satisfy Claim 1, and hence, the result follows.

Suppose $n > 0$. We may assume $a'_n \in \mathcal{A}_n \setminus \mathcal{A}_{n-1}$. For otherwise, the result follows by the induction hypothesis. We can choose a path $a'_n \ast y_{n-1}$ connecting a'_n to y_{n-1}, where $y_{n-1} \in \text{Int}(\mathcal{A}_{n-1})$. This path does not intersect any segment $w, w \ast x, x$ in l_1 or in l_2 or in l_3 with w and x in P except for its end vertices a'_n and y_{n-1}. For otherwise, both a'_n and y_{n-1} are in \mathcal{A}_n, which is contrary to (S3). By the condition (S3), there exists a vertex $a'_{n-1} \in \mathcal{A}_{n-1}$ which is preceding y_{n-1} such that the segment a'_{n-1}, l_1, y_{n-1} or a'_{n-1}, l_2, y_{n-1} or a'_{n-1}, l_3, y_{n-1} does not contain edges in L. We choose a vertex $a'_{n'}$ which is the last vertex before y_{n-1} along l_1 (if $y_{n-1} \in l_1$) or along l_2 (if $y_{n-1} \in l_2$) or along l_3 (if $y_{n-1} \in l_3$) such that the segment y_{n-1}, l_1, a'_{n-1} or y_{n-1}, l_2, a'_{n-1} or y_{n-1}, l_3, a'_{n-1} does not contain edges in L. We choose a vertex $a''_{n'}$ which is the last vertex after y_{n-1} along l_1 (if $y_{n-1} \in l_1$) or along l_2 (if $y_{n-1} \in l_2$) or along l_3 (if $y_{n-1} \in l_3$) such that $a''_{n'} \in \text{Fr}(\mathcal{A}'_{n'})$ for any $n' \leq n-1$, and choose n' minimal so that $a''_{n'} \notin \text{Cl}(\mathcal{A}'_{n-1})$. Also by the condition (S3), there exists a vertex $a''_{n-1} \in \mathcal{A}_{n-1}$ which is succeeding y_{n-1} such that the segment y_{n-1}, l_1, a''_{n-1} or y_{n-1}, l_2, a''_{n-1} or y_{n-1}, l_3, a''_{n-1} does not contain edges in L. We choose a vertex $a''_{n'}$ which is the last vertex after y_{n-1} along l_1 (if $y_{n-1} \in l_1$) or along l_2 (if $y_{n-1} \in l_2$) or along l_3 (if $y_{n-1} \in l_3$) such that $a''_{n'} \in \text{Fr}(\mathcal{A}'_{n'})$ for any $n' \leq n-1$, and choose n' minimal so that $a''_{n'} \notin \text{Cl}(\mathcal{A}'_{n-1})$. We will write a''_n instead of $a'_{n'}$ since it may not be confusing for readers.

Then there does not exist a vertex that is in $\text{Int}(\mathcal{A}'_{n'})$ in the segments both y_{n-1}, l_1, a''_n and a''_n, l_1, y_{n-1} (if $y_{n-1} \in l_1$), or both y_{n-1}, l_2, a''_n and a''_n, l_2, y_{n-1} (if $y_{n-1} \in l_2$), or both y_{n-1}, l_3, a''_n and a''_n, l_3, y_{n-1} (if $y_{n-1} \in l_3$).

We may assume that there are no vertices in $\text{Int}(B)$ in the segments both y_{n-1}, l_1, a''_n and a''_n, l_1, y_{n-1} (if $y_{n-1} \in l_1$), or both y_{n-1}, l_2, a''_n and a''_n, l_2, y_{n-1} (if $y_{n-1} \in l_2$), or both y_{n-1}, l_3, a''_n and a''_n, l_3, y_{n-1} (if $y_{n-1} \in l_3$). For otherwise, there exist some P_i of P which contains distinct vertices r, w such that $r \in \mathcal{A}_n'$ and $w \in A \cup B$. But, in this case, we can take three paths which satisfy the case n'. Hence the result follows by the induction hypothesis.

We consider nine cases of l_1, l_2, and l_3.

Case 1. l_3 is connecting from a to r, l_2 is connecting from a_1 to a''_n, and l_1 is connecting from b to b.

In this case, if $y_{n-1} \in l_1$, then we can replace the path l_2 such that $a_1, l_2, y_{n-1}, a''_n \ast r, r, T_3, b$, and l_1 are still l_1 and l_1. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 1. So, the result follows by the induction hypothesis.

If $y_{n-1} \in l_1$, then we can replace the path l_2 such that $a_1, l_2, l_3, a''_n \ast y_{n-1}, y_{n-1}, l_1, r$ and also we can replace the path l_1 such that $a, l_1, a''_n \ast l_3$ is
still \(l_3 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(n' \) of Case 7. So, the result follows by the induction hypothesis.

If \(y_{n-1} \in l_3 \), then we can replace the path \(l_3 \) such that \(a'_n, l_3, b \) and also we can replace the path \(l_2 \) such that \(a, l_2, a'_n, a'_n \ast y_{n-1}, y_{n-1}, l_1, b \) is still \(l_1 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(n' \) of Case 2. So, the result follows by the induction hypothesis.

Case 2. \(l_1 \) is connecting from \(a \) to \(r \), \(l_2 \) is connecting from \(a'_x \) to \(b_y \), and \(l_3 \) is connecting from \(a'_n \) to \(b \).

In this case, if \(y_{n-1} \in l_3 \), then we can replace the path \(l_3 \) such that \(a'_n, l_3, a'_n, y_{n-1}, y_{n-1}, y_{n-1}, l_1, b \) and \(l_2 \) are still \(l_1 \) and \(l_2 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(n' \) of Case 2. So, the result follows by the induction hypothesis.

If \(y_{n-1} \in l_2 \), then we can replace the path \(l_2 \) such that \(b, l_2, a'_n, a'_n, y_{n-1}, y_{n-1}, l_1, r \) and also we can replace the path \(l_1 \) such that \(a, l_1, a'_n \ast y_{n-1}, l_1 \ast a'_n \ast y_{n-1} \) is still \(l_1 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(n' \) of Case 6. So, the result follows by the induction hypothesis.

If \(y_{n-1} \in l_2 \), then we can replace the path \(l_2 \) such that \(a, l_2, a'_n \) and also we can replace the path \(l_1 \) such that \(b, l_1, a'_n, a'_n, y_{n-1}, l_1, b \) is still \(l_1 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(n' \) of Case 1. So, the result follows by the induction hypothesis.

Case 3. \(l_1 \) is connecting from \(a \) to \(b_y \), \(l_2 \) is connecting from \(a'_x \) to \(r \), and \(l_3 \) is connecting from \(a'_n \) to \(b \).

In this case, if \(y_{n-1} \in l_2 \), then we can replace the path \(l_2 \) such that \(a'_n, l_2, a'_n, y_{n-1}, y_{n-1}, l_1, r \) and also we can replace the path \(l_1 \) such that \(a, l_1, a'_n \ast y_{n-1}, y_{n-1}, y_{n-1}, l_1 \ast a'_n \ast y_{n-1} \) is still \(l_1 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(n' \) of Case 3. So, the result follows by the induction hypothesis.

If \(y_{n-1} \in l_1 \), then we can replace the path \(l_1 \) such that \(b, l_1, y_{n-1}, y_{n-1}, l_1, r \) and also we can replace the path \(l_1 \) such that \(a, l_1, a'_n, a'_n \ast y_{n-1}, l_1, y_{n-1} \ast a'_n \ast y_{n-1} \) is still \(l_1 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(n' \) of Case 5. So, the result follows by the induction hypothesis.

If \(y_{n-1} \in l_3 \), then we can replace the path \(l_3 \) such that \(a'_n, l_3, a'_n, y_{n-1}, y_{n-1}, l_1, b \) and also we can replace the path \(l_1 \) such that \(r, l_1, y_{n-1}, y_{n-1}, b \) is still \(l_1 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(n' \) of Case 4. So, the result follows by the induction hypothesis.

Case 4. \(l_1 \) is connecting from \(a \) to \(b_y \), \(l_2 \) is connecting from \(a'_x \) to \(a_x \), and \(l_3 \) is connecting from \(r \) to \(b \).

In this case, if \(y_{n-1} \in l_2 \), then we can replace the path \(l_2 \) such that \(a'_n, l_2, a'_n \ast y_{n-1}, y_{n-1}, l_1, b \) and \(l_2 \) are still \(l_1 \) and \(l_3 \). These three paths \(l_1, l_2, \) and \(l_3 \) satisfy the case \(n' \) of Case 4. So, the result follows by the induction hypothesis.

If \(y_{n-1} \in l_1 \), then we can replace the path \(l_1 \) such that \(a, l_1, a'_n, a'_n \ast y_{n-1}, y_{n-1}, b \) and also we can replace the path \(l_1 \) such that \(a, l_1, a'_n \ast y_{n-1}, y_{n-1}, l_1, b \) is still \(l_1 \).
These three paths l_1, l_2, and l_3 satisfy the case n' of Case 6. So, the result follows by the induction hypothesis.

If $y_{n-1} \in l_3$, then we can replace the path l_2 such that a''_n, \overline{T}_n, r and also we can replace the path l_1 such that a'_n, \overline{T}_n, $a''_n \cdot y_{n-1}$, y_{n-1}, l_3, b. l_1 is still l_1. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 3. So, the result follows by the induction hypothesis.

Case 5. l_1 is connecting from a to a'_n, l_2 is connecting from b, to r, and l_3 is connecting from a_γ to b_γ.

In this case, if $y_{n-1} \in l_1$, then we can replace the path l_1 such that a_n, l_1, y_{n-1}, y_{n-1}, a''_n, \overline{T}_n, $a''_n \cdot l_2$ and l_3 are still l_2 and l_3. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 5. So, the result follows by the induction hypothesis.

If $y_{n-1} \in l_2$, then we can replace the path l_1 such that a_n, l_1, a''_n, $a''_n \cdot y_{n-1}$, y_{n-1}, l_2, b_γ and also we can replace the path l_2 such that a''_n, l_2, r, l_3 is still l_3. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 3. So, the result follows by the induction hypothesis.

If $y_{n-1} \in l_3$, then we can replace the path l_2 such that a''_n, l_1, a''_n and also we can replace the path l_1 such that a_n, l_1, a''_n, $a''_n \cdot y_{n-1}$, y_{n-1}, l_1, b. l_3 is l_2. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 8. So, the result follows by the induction hypothesis.

Case 6. l_1 is connecting from a to a'_n, l_2 is connecting from b to r, and l_3 is connecting from a_γ to b_γ.

In this case, if $y_{n-1} \in l_1$, then we can replace the path l_1 such that a_n, l_1, y_{n-1}, y_{n-1}, a''_n, \overline{T}_n, $a''_n \cdot l_2$ and l_3 are still l_2 and l_3. These three paths l_1, l_2, l_3 satisfy the case n' of Case 6. So, the result follows by the induction hypothesis.

If $y_{n-1} \in l_2$, then we can replace the path l_1 such that a_n, l_1, a''_n, $a''_n \cdot y_{n-1}$, y_{n-1}, l_2, r and also we can replace the path l_1 such that a_n, l_1, a''_n, $a''_n \cdot l_2$ is l_3. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 2. So, the result follows by the induction hypothesis.

If $y_{n-1} \in l_3$, then we can replace the path l_2 such that a''_n, \overline{T}_n, a_γ and also we can replace the path l_1 such that a_n, l_1, a''_n, $a''_n \cdot y_{n-1}$, y_{n-1}, l_3, b_γ, l_3 is l_2. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 4. So, the result follows by the induction hypothesis.

Case 7. l_1 is connecting from a to a'_n, l_2 is connecting from a_γ to r and l_3 is connecting from b_γ to b.

In this case, if $y_{n-1} \in l_1$, then we can replace the path l_1 such that a_n, l_1, y_{n-1}, y_{n-1}, a''_n, \overline{T}_n, $a''_n \cdot l_2$ and l_3 are still l_2 and l_3. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 7. So, the result follows by the induction hypothesis.

If $y_{n-1} \in l_2$, then we can replace the path l_1 such that a_n, l_1, a''_n, $a''_n \cdot y_{n-1}$, y_{n-1}, l_2, r and also we can replace the path l_2 such that a_n, l_2, $a''_n \cdot l_3$ is l_3. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 8. So, the result follows by the induction hypothesis.
These three paths l_1, l_2, and l_3 satisfy the case n' of Case 1. So, the result follows by the induction hypothesis.

If $y_{n-1} \in l_3$, then we can replace the path l_1 such that a'_r, \bar{T}_3, b_y and also we can replace the path l_1 such that a, l_1, a'_r, a'_n, \bar{T}_2, a'_{y-1}, l_1, b, l_2 is still l_2. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 9. So, the result follows by the induction hypothesis.

Case 8. l_1 is connecting from a to b, l_2 is connecting from a_r to a'_r and l_3 is connecting from b_y to r.

In this case, if $y_{n-1} \in l_2$, then we can replace the path l_2 such that a, l_2, y_{n-1}, a'_r, a'_n, \bar{T}_3, a'_y, l_1, l_3 and l_3 are still l_1 and l_3. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 8. So, the result follows by the induction hypothesis.

If $y_{n-1} \in l_3$, then we can replace the path l_3 such that a'_r, \bar{T}_3, b_y and also we can replace the path l_3 such that a, l_1, a'_r, l_2 is l_2. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 5. So, the result follows by the induction hypothesis.

If $y_{n-1} \in l_3$, then we can replace the path l_3 such that a'_r, \bar{T}_3, b_y and also we can replace the path l_3 such that a, l_1, a'_r, a'_n, \bar{T}_3, a'_y, l_1, l_3, r, l_1 is still l_1. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 9. So, the result follows by the induction hypothesis.

Case 9. l_1 is connecting from a to b, l_2 is connecting from a_r to r, and l_3 is connecting from a'_r to b_y.

In this case, if $y_{n-1} \in l_3$, then we can replace the path l_3 such that a'_r, \bar{T}_3, a'_n, \bar{T}_3, a'_r, y_{n-1}, l_3, b_y, l_1 and l_2 are still l_1 and l_2. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 9. So, the result follows by the induction hypothesis.

If $y_{n-1} \in l_1$, then we can replace the path l_1 such that b_y, \bar{T}_3, a'_r, a'_n, \bar{T}_3, a'_y, y_{n-1}, l_1, b and also we can replace the path l_1 such that a, l_1, a'_r, l_2 is still l_2. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 7. So, the result follows by the induction hypothesis.

If $y_{n-1} \in l_2$, then we can replace the path l_2 such that a, l_2, a'_n and also we can replace the path l_2 such that b_y, \bar{T}_3, a'_r, a'_n, \bar{T}_3, a'_y, y_{n-1}, l_1, r, l_1 is still l_1. These three paths l_1, l_2, and l_3 satisfy the case n' of Case 8. So, the result follows by the induction hypothesis.

So, Subclaim 5 follows. Therefore, Claim 4 follows.

Since $V(P)$ is finite, the sequence of sets $A'_0 \subseteq A'_1 \subseteq \cdots$ and the sequence $B'_0 \subseteq B'_1 \subseteq \cdots$ must be constant from some point onwards. Let A' and B' be the final sets.

By Claims 3 and 4, we can get the fact that either $|Fr(A')| \leq k-3$ or $|Fr(B')| \leq k-3$. Without loss of generality, we may assume that $|Fr(A')| \leq k-3$. If $r \in Int(A')$, then $Fr(A') \cup \{a\}$ is a cutset separating r
from b and its cardinality is at most $k-2$, which is contrary to the connectivity of G.

If \(r \not\in \text{Int}(A') \), then \(x_{r,m} \) is in \(\text{Fr}(A') \). In this case, \(\text{Fr}(A') \cup \{a\} \cup \{x_{r,m-2}\} \) is a cutset separating r from b and its cardinality is at most $k-1$, which is contrary to the connectivity of G. So Theorem 2 follows.

5. OUTLINE OF THE PROOF OF THE LOVÁSZ–WOODALL CONJECTURE

Woodall [18] also proved the following.

Theorem 3. If L is a set of k independent edges in a $(k+1)$-connected graph G, and $G - \{a, b\}$ has a circuit containing all the edges of $L \setminus \{(a, b)\}$, where $(a, b) \in L$, then G has a circuit containing all the edges of L.

The author [10] proved the following.

Theorem 4. Let L be a set of k independent edges in a k-connected graph G, let e be an edge in L, and define $L' := L \setminus e$. If there exist two disjoint circuits C_1 and C_2 such that C_1 contains e and C_2 contains L', then G contains a circuit that contains all the edges in L.

To compare Theorem 3 with Woodall’s result, the assumption that there exists a circuit C which contains all the edges in $L' := L \setminus e$, where e is one of L, is in common. And also, the assumption that $V(C) \cap V(e) = \emptyset$ is in common. But, if there exists a circuit in $G \setminus C$ which contains e, then the connectivity drops from $k+1$ to k.

By Theorem 4, there exist one or two disjoint circuits that contain all the edges in L. If there exists one circuit that contains all the edges in L, then Conjecture 1 holds. So we may assume that there exist two disjoint circuits C_1 and C_2 such that C_1 contains L' and C_2 contains L'', where $L' \cup L'' = L$ and $|L'| \leq |L''|$. We consider the induction on $|L'|$. By Theorem 4, if $|L'| = 1$, then Conjecture 1 holds.

Theorem 4 is the first step toward Lovász–Woodall Conjecture. In addition, we get the following theorem in [10] by using Theorem 4.

Theorem 5. Let L be a set of k independent edges in a k-connected graph G, let e_1, e_2 be two edges in L, and define $L' := L \setminus \{e_1, e_2\}$. If there exist two disjoint circuits C_1 and C_2 such that C_1 contains e_1 and e_2, and C_2 contains L', then G contains a circuit that contains all the edges in L.

We also get the following theorem in [10] by using Theorems 4 and 5.
Theorem 6. Let \(L \) be a set of \(k \) independent edges in a \(k \)-connected graph \(G \), let \(e_1, e_2, e_3 \) be three edges in \(L \), and define \(L' := L \setminus \{e_1, e_2, e_3\} \). If there exist two disjoint circuits \(C_1 \) and \(C_2 \) such that \(C_1 \) contains \(e_1, e_2, \) and \(e_3 \), and \(C_2 \) contains \(L' \), then \(G \) contains a circuit that contains all the edges in \(L \).

By using Theorems 2, 4, and 5, we get the following corollaries which imply the results of Erdős and Győri [4], Lomonosov [13], and Sanders [16].

Corollary 7. Let \(L \) be a set of 4 independent edges in a 4-connected graph \(G \). Then \(G \) has a circuit containing all the edges of \(L \).

Corollary 8. Let \(L \) be a set of 5 independent edges in a 5-connected graph \(G \). If \(G - L \) is connected, then \(G \) has a circuit containing all the edges of \(L \).

By using Theorems 2, 4, 5, and 6, we also get the following corollaries which have not yet been known.

Corollary 9. Let \(L \) be a set of 6 independent edges in a 6-connected graph \(G \). Then \(G \) has a circuit containing all the edges of \(L \).

Corollary 10. Let \(L \) be a set of 7 independent edges in a 7-connected graph \(G \). If \(G - L \) is connected, then \(G \) has a circuit containing all the edges of \(L \).

Now we turn back to the proof of Conjecture 1. Our main tool is to consider the induction on \(|L'|\). In [11], we prove the following theorem.

Theorem 11. Let \(L \) be a set of \(k \) independent edges in a \(k \)-connected graph \(G \). If there exist two disjoint circuits \(C_1 \) and \(C_2 \) such that \(C_1 \) contains \(k' \) edges in \(L \) and \(C_2 \) contains \(k'' \) edges in \(L \), where \(k' + k'' = k \) (this implies \(C_1 \cup C_2 \) contains all the edges in \(L \)), then one of the followings holds.

1. \(G \) has a circuit containing all edges in \(L \).
2. There exist two disjoint circuits \(C'_1 \) and \(C'_2 \) such that \(C'_1 \) contains \(k_1 \) edges in \(L \) and \(C'_2 \) contains \(k_2 \) edges in \(L \) (this implies \(C_1 \cup C_2 \) contains all the edges in \(L \)), where \(k_1 + k_2 = k \) and \(k_1 < k', k_2 > k'' \).
3. We can choose \(C_1 \) and \(C_2 \) such that, for any \(v \in G - C_1 - C_2 \), \(V(C_2) \) is cutset separating from \(v \) to \(C_1 \).

This theorem takes a crucial roles in the proof of Lovász–Woodall Conjecture and this theorem is “Key” idea. If (2) holds, then by the induction hypothesis, we can get the result. Note that (3) implies that there do
not exist paths of length at least 2 connecting C_1 and C_2. There exist only edges connecting C_1 and C_2. Finally, we prove Conjecture 1 by using Theorems 4, 5, and 11 in [12].

ACKNOWLEDGMENTS

This work started when I was an undergraduate student. I thank Professor Hikoe Enomoto and Professor Katsuhiro Ota for their encouragement since then. Also, I thank the referee for reading this manuscript with patience.

REFERENCES

10. K. Kawarabayashi, Two circuits through independent edges, preprint.