Hey Bill, what’s the deal with Induced poset saturation?

Let S_n denote the set of permutations on n symbols. For $k > 0$ and $\pi \in S_n$, $\sigma \in S_{n+k}$ we say that π is covered by σ if we can delete k symbols and, after reducing what’s left to the alphabet $[n]$ we have a copy of π. An example of $\pi \in S_3$ and $\sigma \in S_8$ where σ covers π is:

$$\pi = 132 \text{ is covered by } \sigma = 14286735$$

because the bolded symbols in σ have a 132 pattern. That is, σ contains π as an order isomorphic subpattern. Let $C_{n,n+k}$ denote the minimum size of $A \subseteq S_{n+k}$ so that every member of S_n is covered by some member of A. We have the following:

Theorem 1 (Godbole, K., Lan, Laubmeier, Yuan).

$$k! \frac{(n+k)!}{n^{2k}}(1 + o(1)) \leq C_{n,n+k} \leq k \frac{(n+k)!}{n^{2k}} \log n (1 + o(1)).$$

Notice that the lower bound matches the upper bound up to a logarithmic factor. It remains open to see if the log factor can be removed.

Even more generally, let $C^{(\lambda)}_{n,n+k}$ denote the minimum size of $A \subseteq S_{n+k}$ so that every member of S_n is covered by at least λ members of A. We have the following:

Theorem 2 (Godbole, K., Lan, Laubmeier, Yuan).

$$k! \frac{(n+k)!}{n^{2k}}(1 + o(1)) \leq C^{(\lambda)}_{n,n+k} \leq \frac{(n+k)!}{n^{2k}}(k \log n - (\lambda - 1) \log(k \log n) + \frac{\lambda}{(\lambda - 1)!}(1 + o(1))).$$

We also showed the following:

Theorem 3 (Godbole, K., Lan, Laubmeier, Yuan). Let A be a random subset of S_{n+k} where each element of S_{n+k} is selected for membership in A with probability p. Then we have:

$$p \ll \frac{\log n}{n^{2k-1}} \Rightarrow \mathbb{P}(A \text{ covers } S_n) \to 0(n \to \infty)$$

$$p \gg \frac{\log n}{n^{2k-1}} \Rightarrow \mathbb{P}(A \text{ covers } S_n) \to 1(n \to \infty)$$

establishing a probabilistic threshold for permutation covers via Janson’s inequality. Each of these results generalize the previous work of Allison, Godbole, Hawley, and K.