Hey Bill, what’s the deal with *The minimum number of edges in uniform hypergraphs with Property O*?

Given a graph G, an orientation of G is a graph obtained by taking each edge and putting an order on it (that is, turning the edges which are sets into 2-tuples). Similarly, one can take a k-uniform hypergraph (that is, and graph whose edges are k-sets) and orient it by turning the edges into k-tuples. Any graph obtained this way is an **oriented k-graph**. Let $H = (V, E)$ be an oriented k-graph. For a total order $<$ on V and an edge $(x_1, x_2, \ldots, x_k) = e \in E$ we say that e is consistent with $<$ if $x_1 < x_2 < \ldots < x_k$. That is, the tuple e puts the vertices x_1, x_2, \ldots, x_k in the same order as $<$. We say that H has **Property O** if for any total ordering $<$ of V, there exists an edge $e \in E$ which is consistent with $<$. Let $f(k)$ denote the minimum number of edges in an oriented k-graph which has Property O. The primary aim of this document is to provide bounds on $f(k)$.

As a warm up, here I will include a trivial lower bound on $f(k)$. One proves a lower bound on $f(k)$ by showing that any oriented k graph on few edges must necessarily fail to have Property O. Let $H = (V, E)$ be an arbitrary oriented k-graph. For a fixed edge $(x_1, x_2, \ldots, x_k) = e \in E$, we ask “what proportion of linear orders $<$ on V are consistent with e?”. One observation is that for $<$ to be consistent with e, we only have to consider what the order $<$ does to the elements of e. Further, of the $k!$ ways to arrange the elements of e, only 1 puts them in the order prescribed by e. Hence, only a $\frac{1}{k!}$ proportion of total orders on V are consistent with e. Hence, at most $\frac{|E|}{k!}$ total orders are consistent with some edge $e \in E$. To say it another way, when $|E| < k!$, fewer than 100% of the total orders on V are consistent with some edge. That is, there is some total order on V which is not consistent with some edge, and so H fails to have Property O. Thus we have shown:

$$k! \leq f(k)$$

This simple lower bound is the best lower bound that we have. To prove an upper bound, we take a complete k-graph and orient the edges independently and randomly. We then figure out for which values of n the probability that a k-graph generated this way fails to have Property O dips below 1. For this probability to be less than 1 means that some k-graph generated this way must have Property O. Since $f(k)$ is a statement about the number of edges in an oriented k-graph with Property O, we provide estimates for $\binom{n}{k}$ for our choice of n. This gives the theorem:

Theorem 1 (Duffus, K. Rödl).

$$k! \leq f(k) \leq (k^2 \ln k)k!$$

What we would like to know is whether $\frac{f(k)}{k!}$ tends to infinity with k. Instead, we focus on when a randomly oriented complete k-graph typically has Property O. The actual theorem statement is fairly technical, but here is a version with some of the details swept under the rug:

Theorem 2. There exists a choice of n and a function $\varepsilon(k) \to 0$ so that a complete oriented k graph on n vertices fails to have Property O with high probability. For this choice of n, we have:

$$\binom{n}{k} = k^{1/2-\varepsilon(k)}k!$$

This is the “with high probability” statement for randomly oriented complete k-graphs.