Hey Bill, what’s the deal with *The chromatic number of finite type-graphs*?

We say that sets $X, Y \in \binom{[n]}{k}$ have order type $\tau \in [3]^\ell$ if $|X \cup Y| = \ell$ and $\tau_i = 1, 2, \text{ or } 3$ whenever the ith element of $X \cup Y$ is in $X \setminus Y$, $Y \setminus X$, or $X \cap Y$ respectively. The type graph $G(n, \tau)$ is the graph with vertex set $\binom{[n]}{k}$ where X is adjacent to Y if and only if X and Y have type τ. The chromatic number of type graphs have been studied extensively by Erdős, Hajnal, Rado, and others. More recently, Avart, Luczak, and Rödl asked if there was a general formula for the chromatic number based τ. Their question was answered by the following:

Theorem 1 (Avart, K., Reiher, Rödl). *For every type τ, there exists a constant $\beta = \beta(\tau)$ so that:*

$$\chi(G(n, \tau)) = \Theta(\log_{(\beta)} n)$$

*where $\log_{(t)} n$ is the t-fold iterated binary logarithm of n."

Given τ, we provide an algorithm to (easily) compute β.