Introduction to programmable computing devices
Overview

• What is a computer?
• How is the computer developed??
• How to encode instructions in past programmable devices
Etymology of the word *computer*

• Origin of the word *Computer*:

 • *Computer* is derived directly from the Latin *computus* and *computare*.
 • Both Latin words mean the same as the English verb *compute*:

 Compute = to determine by mathematical means.

 • *Computare* = *com* + *putare* (Latin root words)
 • *Putare* means to *reckon*
 • *Com* is an *intensifying prefix*.

 (An intensifying prefix heightens or stresses, but does not change the meaning of the word it modifies. Example: *inflammable*)
What is a computer

• Computer:

 • A computer is a "reckoning" or computing device....
 • In fact: a computer is an programmable computing device (that helps humans do their chores)

• How was the computer developed/invented:

 • Humans invented computing devices in ancient times.
 • In the industrial revolution, programmable machines were invented
 • The computer is a combination of these 2 ideas
Overview

• What is a computer?
• How is the computer developed??
• How to encode instructions in past programmable devices
• Logical (functional) view of a computer
• Program flow
• Types of instructions that a computer can execute
Some computing devices invented throughout history

- "Ancient" computing device: the abacus

Toy abacus:
- # beads in row 1 = unit value
- # beads in row 2 = 10's value
- # beads in row 3 = 100's value
- And so on

Real abacus:
- # beads in column 1 = unit value
- # beads in column 2 = 10's value
- # beads in column 3 = 100's value
- And so on
- 1 bead in upper half = 5 beads in lower half
- Value represented by abacus = 63571
1822: Babbage's difference engine

- The difference engine consists of a number of columns, numbered from 1 to N.
- The machine is able to store one decimal number in each column.
- The machine can only add the value of a column k + 1 to column k to produce the new value of k.
- Column N can only store a constant,
- Column 1 displays (and possibly prints) the value of the calculation on the current iteration.
Programmable machines, programs and instructions

- Programmable machine:
 • *Programmable* machine = a device which function can be altered by a *program*

- Program:
 Program = a series of instructions that accomplishes a specific task

- Example:
 • Each *row* of holes in the *card board* is an instruction for some machine
 • The position of a hole encodes a certain meaning
 • The *program* consists of a series of *rows (= instructions)* on the card board
Examples of Programmable machines

Mechanical piano/music box

- A mechanical piano can play different songs
- The drum in the center of the piano contains spikes and rotates slowly
- Spikes at different position causes the piano to play a different note
- Different spike patterns (on different drums) will cause the piano to play a different song
Examples of Programmable machines

Mechanical loom

- The mechanical loom can weave fabric in different patterns
- The loom's movement is controlled by holes punched in a card
- Different hole patterns (on different cards) will cause the loom to weave a different pattern
- See:
Overview

• What is a computer?
• How is the computer developed??
• How to encode instructions in past programmable devices
• Logical (functional) view of a computer
• Program flow
• Types of instructions that a computer can execute
Instruction encoding

• Instructions (= program instructions) tells a machine what to do
• Instructions are represented using an encoding method
• Example encoding:
 • 1 means add
 • 2 means subtract
 • And so on.

• Another example: encoding a song on paper

• The location of a hole in the paper corresponds to a particular musical note
• Encoding a song: a series of holes in the paper make the mechanical piano/music box play the notes of a song
Introduction to computer: storing instructions and information
Overview

- Logical (functional) view of a computer
- Program flow
- Types of instructions that a computer can execute
Overview

• Logical (functional) view of a computer

• Program flow

• Types of instructions that a computer can execute
Most common perception of a computer

- This is the *most common* view (perception) of a *computer* is as follows:
Most common perception of a computer (cont.)

- Component of the computer by their functionality:
 - **Input devices**: allow users to enter input to the computer (mouse, keyboard, microphone, camera)
 - **Output devices** allow the computer to display output to the user (monitor, printer, speaker)
 - **Input/output devices**: used by the computer to store data and/or communicate with other computers (CD-rom, floppy drive, hard drive, modem, network)
 - **Computer system** (that's the box in the middle of the picture)
Most common uses of a computer

- Today, the most popular usages of a computer are:
 - Web browsing
 - Play games
 - Text processing (for homework)

The operations of these tasks differ widely from each other.

And yet, they are accomplished using the same machine (a computer) through executing a different computer program.
Hardware and Software

• Computer jargon:

- **Hardware** = the *physical parts* of a computer
 - The case containing the computer
 - Keyboard
 - Terminal
 - Mouse
 - Etc
Hardware and Software (cont.)

- **Software** = the *computer programs* that you run with a computer
 - Web browser
 - PC games
 - Microsoft Word
 - Microsoft Excel
 - Etc
Hardware and Software (cont.)

- We will first study how a computer (hardware) is connected together so it can execute computer programs.
- Then we will study what computer software does.
Logical view of a computer (hardware)

• Logical (functional) view of a computer

![Diagram of computer hardware components including input/output devices, memory, and central processing unit]
Logical view of a computer (hardware) (cont.)

• The input devices, output devices and input/output (I/O) devices are called peripheral devices

• A computer system consists of:

 • The Central Processing Unit (a.k.a. the CPU)
 • The memory or Random Access Memory (RAM)

In this webnote, we will first study the computer (RAM) memory
Functionality of the *RAM* (Memory)

- Structure of the Memory (RAM)

 - The **RAM** consists of multiple memory cells:
 - Each memory cell is *uniquely* identified by its memory address
 - Memory addresses always start at zero (0)
 - The last memory address depends on the amount of memory installed in the computer system

![Diagram of RAM memory cells with addresses 0, 1, 2, 3, and values 13, 3, 0, 45 respectively.](diagram.png)
Operation of the memory

- Memory can **store** and **recall (retrieve)** values for the CPU:

Each **memory cell** can store one **number**

Example:

- **Memory location 0** stores the value **13**
- **Memory location 1** stores the value **3**
- **Memory location 2** stores the value **0**
- **Memory location 3** stores the value **45**
- ...
Operation of the memory (cont.)

• Each memory cell can store and recall a value by the command by the CPU:

• A memory cell is like the STO/RCL function of a calculator:

• Numbers that are stored in a memory cell can encode:
 • a instruction
 • a piece of information
Operation of the memory (cont.)

- Demo:
 - Open a terminal
 - Execute the command: `dtcalc`
 - Click in the text box and enter a number
 - Right click in the Store button and select a register:

 ![Calculator Diagram]

 - You can right click the Recall button and select a register to recall the stored value
Operation of the memory (cont.)

• **Computer (RAM) memory:**

 - The **RAM memory** works just like the **Store/recall** buttons in the above demo.

 - The **RAM memory** is under the control of the **CPU**:

 - The **CPU** can store a value in a specific memory location in the **RAM memory**
 - The **CPU** can **recall** the stored value later when it needs it.
Storing information in memory cells using numbers

- Information can be stored as *numbers* by using an encoding method.
- An *encoding method* is simply an *agreement* on a representation of some facts by specific *numbers*.
- 2 common types of things are represented by *numbers* inside a computer:

1. The *instructions* that tells the computer what to do
2. Various kinds of *information* that are stored and manipulated by the computer.
Computer programs (Software)

• Computer program:

A computer program (or software) is a (very long) list of instructions that are executed by the computer.

Schematically: what a computer program look like

"add x to y"
"subtract x from y"
"multiply x with y “
....
Computer programs (Software) (cont.)

• The instructions are *not* represented in English, but by some number
 (Some programs contain over a billion instructions!)

• Another commonly used name for computer program is computer application
 I will use these 2 terms interchangeably
Representing *computer instructions*

- Representing *computer instructions* by numbers:

 - A *computer* can perform *Mathematical operations* and *logical operations*:

 Example:
 - Add
 - Subtract
 - Multiply
 - Divide
 - Compare 2 numbers
 - *And* 2 logical value
 - *Or* 2 logical value
Representing *computer instructions* (cont.)

- Each operation is represented by a unique encoding.

Example:

- $0 = \text{add}$
- $1 = \text{subtract}$
- $2 = \text{multiply}$
- And so on...
Computer programs - revisited

• Computer program: (the naked truth)

 • A computer program (or software) is a (very long) list of numbers that represents instructions that are executed by the computer

• Schematically: what a computer program look something like

```
1256
875
7263
....
```

Each number represents a computer instruction
Representing *information*

- A **computer** is used to process *information*

 • How is *information* stored inside a **computer** ???
Representing *information* (cont.)

- Representing various kinds of *information* by numbers:
 - Same technique is used to encode any type of *information*
 - Example: encoding gender information
 - $0 = \text{male}$
 - $1 = \text{female}$
 - Example: encoding marital status information
 - $0 = \text{single}$
 - $1 = \text{married}$
 - $2 = \text{divorced}$
 - $3 = \text{widowed}$
How can we tell what a number stored in the computer mean?

- In the previous examples, we saw that the number 0 can mean:
 - Add (in instruction encoding)
 - male (in gender information)
 - single (in marital status information)

- We can only tell what is the meaning of the number 0 if we are given:
 - context information
Illustration of *context*

- $64,000 question

- Make a *correct* English sentence that starts with:

 You is

- Where *you* is the *subject* of the sentence.
Illustration of *context* (cont.)

- Answer:

 You is a word in the English language
Illustration of context (cont.)

- Importance of context:

 - The word *you* used in a sentence such as:

 You are a student

 is used in the context of a *personal pronoun*

 - The word *you* used in a sentence such as:

 You is a word in the English language

 is used in the context of a *noun*
Now we can tell what a number stored in the computer mean!

- If the computer is executing an instruction, then:
 - The number 0 means "perform an add operation"

- If the computer is examining gender information, then:
 - The number 0 means "male"

- If the computer is examining marital status information, then:
 - The number 0 means “single”
The computer memory and the binary number system
Memory devices

- A **memory device** is a gadget that helps you **record** information and **recall** the information at some later time.

Example:
Memory devices (cont.)

- Requirement of a memory device:
 - A memory device must have more than 1 states
 (Otherwise, we can't tell the difference)

Example:

Memory device in state 0

Memory device in state 1
The switch is a memory device

- The electrical switch is a memory device:
 - The electrical switch can be in one of these 2 states:
 - off (we will call this state 0)
 - on (we will call this state 1)
Memory cell used by a computer

- *One switch* can be in one of 2 states
- A *row of n switches*: can be in one of 2^n states!
Memory cell used by a computer (cont.)

- Example: row of 3 switches

<table>
<thead>
<tr>
<th>Possible state that row of 3 switches can assume:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- A row of 3 switches can be in one of $2^3 = 8$ states.
- The 8 possible states are given in the figure above.
Representing numbers using a row of switches

• We saw how information can be represented by number by using a code (agreement)

• Recall: we can use numbers to represent marital status information:

 • 0 = single
 • 1 = married
 • 2 = divorced
 • 3 = widowed
Representing numbers using a row of switches (cont.)

• We can represent each number using a different state of the switches.

Example:

3 switches: \[
\begin{array}{c}
\square \\
\square \\
\square \\
\end{array}
\]

Legend: \[
\begin{array}{c}
\square \quad \text{off} \\
\blacksquare \quad \text{on}
\end{array}
\]

Representing different numbers with 3 switches:

\[
\begin{array}{c}
\begin{array}{c}
\square \\
\square \\
\square \\
\end{array} = 0 &\quad \begin{array}{c}
\blacksquare \\
\blacksquare \\
\blacksquare \\
\end{array} = 4 \\
\begin{array}{c}
\square \\
\square \\
\blacksquare \\
\end{array} = 1 &\quad \begin{array}{c}
\blacksquare \\
\blacksquare \\
\blacksquare \\
\end{array} = 5 \\
\begin{array}{c}
\square \\
\blacksquare \\
\blacksquare \\
\end{array} = 2 &\quad \begin{array}{c}
\blacksquare \\
\blacksquare \\
\blacksquare \\
\square \\
\end{array} = 6 \\
\begin{array}{c}
\square \\
\blacksquare \\
\blacksquare \\
\end{array} = 3 &\quad \begin{array}{c}
\blacksquare \\
\blacksquare \\
\blacksquare \\
\blacksquare \\
\end{array} = 7
\end{array}
\]
Representing numbers using a row of switches (cont.)

• To complete the knowledge on how information is represented inside the computer, we will now study:

 • How to use the different states of the switches to represent different numbers

• The representation scheme has a chic name:

 • the binary number system
The *binary number* system

- The *binary number system* uses *2 digits* to encode a number:
 - **0** = represents no value
 - **1** = represents a unit value

- That means that you can *only use* the digits **0** and **1** to *write a binary number*

 - **Example:** some binary numbers
 - 0
 - 1
 - 10
 - 11
 - 1010
 - and so on.
The *binary number* system (cont.)

- The **value** that is *encoded (represented)* by a **binary number** is computed as follows:

<table>
<thead>
<tr>
<th>Binary number</th>
<th>Value encoded by the binary number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{n-1} \ d_{n-2} \ldots \ d_1 \ d_0)</td>
<td>(d_{n-1} \times 2^{n-1} + d_{n-2} \times 2^{n-2} + \ldots + d_1 \times 2^1 + d_0 \times 2^0)</td>
</tr>
</tbody>
</table>
The *binary number* system (cont.)

Example:

<table>
<thead>
<tr>
<th>Binary number</th>
<th>Value encoded by the binary number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$0 \times 2^0 = 0$</td>
</tr>
<tr>
<td>1</td>
<td>$1 \times 2^0 = 1$</td>
</tr>
<tr>
<td>10</td>
<td>$1 \times 2^1 + 0 \times 2^0 = 2$</td>
</tr>
<tr>
<td>11</td>
<td>$1 \times 2^1 + 1 \times 2^0 = 3$</td>
</tr>
<tr>
<td>1010</td>
<td>$1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 8 + 2 = 10$</td>
</tr>
</tbody>
</table>
The *binary number system* (cont.)

- Now you should understand how the *different states* of these 3 switches represent the numbers 0-7 using the binary number system:

\[
\begin{align*}
\text{3 switches:} & \quad \begin{array}{c}
\square \square \square \\
\end{array} \\
\text{legend:} & \quad \begin{array}{c}
\square \quad \text{off} \\
\blacksquare \quad \text{on}
\end{array}
\end{align*}
\]

Representing different numbers with 3 switches:

\[
\begin{align*}
\square \square \square & = 0 & \blacksquare \square \square & = 4 \\
\square \square \blacksquare & = 1 & \blacksquare \square \blacksquare & = 5 \\
\square \blacksquare \blacksquare & = 2 & \blacksquare \blacksquare \square & = 6 \\
\square \blacksquare \blacksquare & = 3 & \blacksquare \blacksquare \blacksquare & = 7
\end{align*}
\]
A cute *binary number* joke

- Try to understand this joke:

(Read: there are binary 10 (= 2) types of people: those who understand binary (numbers) and those who don't)
A cute binary number joke (cont.)

- A knock off joke:

There are 11 types of people in the world:
Those who understand binary,
Those too stupid to understand,
And those who try to lick their elbows.
What does all this have to do with a computer?

- Recall what we have learned about the Computer RAM memory:

 - The RAM consists of multiple memory cells:

 Each memory cell stores a number
What does all this have to do with a computer? (cont.)

• The connection between the computer memory and the binary number system is:

• The computer system uses the binary number encoding to store the number

Example:

<table>
<thead>
<tr>
<th>How we perceive it:</th>
<th>The reality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>address of memory cell</td>
<td>address of memory cell</td>
</tr>
<tr>
<td>0</td>
<td>000...000</td>
</tr>
<tr>
<td>1</td>
<td>000...001</td>
</tr>
<tr>
<td>2</td>
<td>000...010</td>
</tr>
<tr>
<td>3</td>
<td>000...011</td>
</tr>
</tbody>
</table>

A memory address is 32 bits long!!!
What does all this have to do with a computer? (cont.)

• Note: the address is also expressed as a binary number.

A computer can have over 4,000,000,000 bytes (4 Gigabytes) of memory.

So we need a 32 bites to express the address.
Computer memory

- A computer is an electronic device
- Structure of a RAM memory:
 - The RAM memory used by a computer consists of a large number of electronic switches
 - The switches are organized in rows
 - For historical reason, the number of switches in one row is 8
In order to store text information in a computer, we need to encode:

- 26 upper case letters ('A', 'B', and so on)
- 26 lower case letters ('a', 'b', and so on)
- 10 digits ('0', '1', and so on)
- 20 or so special characters ('&', '%', '$', and so on)

for a total of about 100 different symbols

The nearest even power 2^n that is larger than 100 is:

- $2^7 = 128 \geq 100$

For a reason beyond the scope of this course, an 8th switch is added.
Computer memory (cont.)

- This is a portion of the RAM memory looks like:

<table>
<thead>
<tr>
<th>address of memory cell</th>
<th>RAM (memory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000...000</td>
<td>00001101</td>
</tr>
<tr>
<td>000...001</td>
<td>00000011</td>
</tr>
<tr>
<td>000...010</td>
<td>00000000</td>
</tr>
<tr>
<td>000...011</td>
<td>00101101</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- What information is stored in the RAM memory depends on:
 - The type of data (this is the context information)
 - Example of types: marital status, gender, age, salary, and so on.
 - This determines the encoding scheme used to interpret the number
Computer memory *jargon*:

- **bit** = *(binary digit)* a *smallest* memory device
 A *bit* is in fact a switch that can remember 0 or 1
- *(The digits 0 and 1 are digits used in the binary number system)*

- **Byte** = 8 bits
 A *byte* is in fact *one row* of the RAM memory

- **KByte** = kilo byte = $1024 (= 2^{10})$ bytes (approximately 1,000 bytes)
- **MByte** = mega byte = $1048576 (= 2^{20})$ bytes (approximately 1,000,000 bytes)
- **GByte** = giga byte = $1073741824 (= 2^{30})$ bytes (approximately 1,000,000,000 bytes)
- **TByte** = tera byte
Combining adjacent memory cells

- A byte has 8 bits and therefore, it can store:

 \[2^8 = 256 \] different patterns

 (These 256 patterns are: 00000000, 00000001, 00000010, 00000011, ..., 11111111)
Combining adjacent memory cells (cont.)

- Each pattern can be encoded exactly one number:

 - 00000000 = 0
 - 00000001 = 1
 - 00000010 = 2
 - 00000011 = 3
 - ...
 - 11111111 = 255

Therefore, one byte can store one of 256 possible values (You can store the number 34 into a byte, but you cannot store the number 456, the value is out of range)
Combining adjacent memory cells (cont.)

- Exploratory stuff:

 - The following computer program illustrates the effect of the out of range phenomenon:

```java
public class test {
    public static void main(String args[])
    {
        byte x = (byte) 556;
        System.out.println(x);
    }
}
```
Combining adjacent memory cells (cont.)

- Compile and run:

  ```
  >>> javac test.java
  >>> java test
  44
  ```

- This phenomenon is called **overflow** (memory does not have enough space to represent the value).

 This is the *same* phenomenon when you try to compute $1/0$ with a **calculator**; except that the **calculator** was **programmed** (by the manufacturer) to **reported the error** (and the computer is *not*).
Combining adjacent memory cells (cont.)

- The computer can combine adjacent bytes (memory cells) and use it as a larger memory cell

Schematically:

```
2 bytes:
```

```
one 16-bits memory cell:
```

A 16 bits memory cell can store one of $2^{16} = 65536$ different patterns.
Therefore, it can represent (larger) numbers ranging from: $0 – 65535$.
Combining adjacent memory cells (cont.)

- Example: how a computer can use 2 consecutive bytes as a 16 bits memory cell:

 The bytes at address 0 and address 1 can be interpreted as a 16 bits memory cell (with address 0)
Combining adjacent memory cells (cont.)

• When the computer accesses the RAM memory, it specifies:
 - The **memory location** (address)
 - The **number of bytes** it needs
Combining adjacent memory cells (cont.)

- The computer can also:

 - combine 4 *consecutive* bytes and use them as a 32 bits memory cell

 - Such a memory call can represent numbers ranging from: $0 - (2^{32}-1)$ or $0 - 4294967295$

 - combine 8 *consecutive* bytes and use them as a 64 bits memory cell

 - Such a memory call can represent numbers ranging from: $0 - (2^{64}-1)$ or $0 - 18446744073709551615$
Combining adjacent memory cells (cont.)

- There is **no need** (today) to combine *16 consecutive bytes* and use them as a *128 bits memory cell*
- But this may change in the future...
The computer memory and the binary number system
Memory devices

• A memory device is a gadget that helps you record information and recall the information at some later time.

Example:
Memory devices (cont.)

• Requirement of a memory device:

 • A memory device must have more than 1 states
 (Otherwise, we can't tell the difference)

Example:

Memory device in state 0 Memory device in state 1
The switch is a *memory device*

- The **electrical switch** is a *memory device*:

 - The **electrical switch** can be in one of these **2 states**:
 - **off** (we will call this state 0)
 - **on** (we will call this state 1)
Memory cell used by a computer

- *One switch* can be in one of 2 states
- A *row of* n *switches*:

 can be in one of 2^n states!
Memory cell used by a computer (cont.)

- Example: row of 3 switches

\[
\begin{align*}
\text{3 switches:} & & \text{legend:} \\
\begin{array}{cc}
\square & \square & \square \\
\hline

down & on & off
\end{array}
\end{align*}
\]

Possible state that row of 3 switches can assume:

- A row of 3 switches can be in one of \(2^3 = 8\) states.
- The 8 possible states are given in the figure above.
Representing numbers using a row of switches

• We saw how information can be represented by number by using a code (agreement)
• Recall: we can use numbers to represent marital status information:

- 0 = single
- 1 = married
- 2 = divorced
- 3 = widowed
Representing numbers using a row of switches (cont.)

- We can represent each number using a different state of the switches.

Example:

3 switches:

\[
\begin{array}{c}
\square \square \square \\
\end{array}
\]

legend:

\[
\begin{array}{c}
\square \text{ off} \\
\blacksquare \text{ on}
\end{array}
\]

Representing different numbers with 3 switches:

\[
\begin{array}{c}
\square \square \square = 0 \\
\square \square \blacksquare = 1 \\
\square \blacksquare \square = 2 \\
\square \blacksquare \blacksquare = 3 \\
\blacksquare \square \blacksquare = 4 \\
\blacksquare \square \square = 5 \\
\blacksquare \blacksquare \square = 6 \\
\blacksquare \blacksquare \blacksquare = 7
\end{array}
\]
Representing numbers using a row of switches (cont.)

- To complete the knowledge on how information is represented inside the computer, we will now study:
 - How to use the different states of the switches to represent different numbers

- The representation scheme has a chic name:
 - the binary number system
The *binary number* system

- The *binary number system* uses 2 digits to encode a number:
 - $0 = \text{represents no value}$
 - $1 = \text{represents a unit value}$

- That means that you can *only use* the digits 0 and 1 to write a *binary number*

 - Example: some binary numbers
 - 0
 - 1
 - 10
 - 11
 - 1010
 - and so on.
The *binary number* system (cont.)

- The **value** that is *encoded (represented)* by a **binary number** is computed as follows:

<table>
<thead>
<tr>
<th>Binary number</th>
<th>Value encoded by the binary number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{n-1} \ d_{n-2} \ldots \ d_1 \ d_0)</td>
<td>(d_{n-1} \times 2^{n-1} + d_{n-2} \times 2^{n-2} + \ldots + d_1 \times 2^1 + d_0 \times 2^0)</td>
</tr>
</tbody>
</table>
The *binary number* system (cont.)

Example:

<table>
<thead>
<tr>
<th>Binary number</th>
<th>Value encoded by the binary number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$0 \times 2^0 = 0$</td>
</tr>
<tr>
<td>1</td>
<td>$1 \times 2^0 = 1$</td>
</tr>
<tr>
<td>10</td>
<td>$1 \times 2^1 + 0 \times 2^0 = 2$</td>
</tr>
<tr>
<td>11</td>
<td>$1 \times 2^1 + 1 \times 2^0 = 3$</td>
</tr>
<tr>
<td>1010</td>
<td>$1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 8 + 2 = 10$</td>
</tr>
</tbody>
</table>
The *binary number* system (cont.)

- Now you should understand how the different states of these 3 switches represent the numbers 0-7 using the binary number system:

 ![3 switches diagram]

 Representing different numbers with 3 switches:

<table>
<thead>
<tr>
<th>Switch State</th>
<th>Binary Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>2</td>
</tr>
<tr>
<td>011</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>101</td>
<td>5</td>
</tr>
<tr>
<td>110</td>
<td>6</td>
</tr>
<tr>
<td>111</td>
<td>7</td>
</tr>
</tbody>
</table>
A cute *binary number* joke

- Try to understand this joke:

(Read: there are **binary 10 (= 2)** types of people: those who understand binary (numbers) and those who don't)
A cute *binary number* joke (cont.)

- A knock off joke:

There are 11 types of people in the world
those who understand binary
those too stupid to understand
and those who try to lick their elbows
What does all this have to do with a computer?

- Recall what we have learned about the Computer RAM memory:
 - The RAM consists of multiple memory cells:
 - Each memory cell stores a number
What does all this have to do with a computer? (cont.)

- The connection between the computer memory and the binary number system is:

- The computer system uses the binary number encoding to store the number.

Example:

<table>
<thead>
<tr>
<th>How we perceive it:</th>
<th>The reality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>address of memory cell</td>
<td>address of memory cell</td>
</tr>
<tr>
<td>0</td>
<td>RAM (memory)</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
</tr>
</tbody>
</table>

A memory address is 32 bits long!!!
What does all this have to do with a computer? (cont.)

- *Note*: the **address** is also expressed as a **binary number**

A computer can have over **4,000,000,000 bytes** (4 Gigabytes) of memory.

So we need a **32 bites** to express the address.
Computer memory

- A computer is an electronic device
- Structure of a RAM memory:

 - The **RAM memory** used by a computer consists of a **large number of electronic switches**
 - The switches are organized in **rows**
 - For **historical reason**, the number of switches in **one row** is 8
In order to store text information in a computer, we need to encode:

- 26 upper case letters ('A', 'B', and so on)
- 26 lower case letters ('a', 'b', and so on)
- 10 digits ('0', '1', and so on)
- 20 or so special characters ('&', '%', '$', and so on)

for a total of about 100 different symbols

The nearest even power 2^n that is larger than 100 is:

- $2^7 = 128 \geq 100$

For a reason beyond the scope of this course, an 8th switch is added.
Computer memory (cont.)

- This is was a **portion** of the **RAM memory** looks like:

<table>
<thead>
<tr>
<th>address of memory cell</th>
<th>RAM (memory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000...000</td>
<td>00001101</td>
</tr>
<tr>
<td>000...001</td>
<td>00000011</td>
</tr>
<tr>
<td>000...010</td>
<td>000000001</td>
</tr>
<tr>
<td>000...011</td>
<td>00101101</td>
</tr>
</tbody>
</table>

- What **information** is stored in the RAM memory depends on:
 - The **type** of data (this is the **context information**)
 - Example of **types**: marital status, gender, age, salary, and so on.
 - This determines the **encoding scheme** used to interpret the number
Computer memory jargon:

- **bit** = (binary digit) a *smallest* memory device
 - A bit is in fact a switch that can remember 0 or 1
- (The digits 0 and 1 are digits used in the binary number system)
- **Byte** = 8 bits
 - A byte is in fact one row of the RAM memory
- **KByte** = kilo byte = $1024 (= 2^{10})$ bytes (approximately 1,000 bytes)
- **MByte** = mega byte = $1048576 (= 2^{20})$ bytes (approximately 1,000,000 bytes)
- **GByte** = giga byte = $1073741824 (= 2^{30})$ bytes (approximately 1,000,000,000 bytes)
- **TByte** = tera byte
Combining adjacent memory cells

• A byte has 8 bits and therefore, it can store:

\[2^8 = 256 \text{ different patterns} \]

(These 256 patterns are: 00000000, 00000001, 00000010, 00000011, 11111111)
Combining adjacent memory cells (cont.)

- Each pattern can are encoded exactly one number:
 - 00000000 = 0
 - 00000001 = 1
 - 00000010 = 2
 - 00000011 = 3
 - ...
 - 11111111 = 255

Therefore, one byte can store one of 256 possible values (You can store the number 34 into a byte, but you cannot store the number 456, the value is out of range)
Combining adjacent memory cells (cont.)

- Exploratory stuff:

 - The following computer program illustrates the effect of the out of range phenomenon:

```java
public class test {
    public static void main(String args[]) {
        byte x = (byte) 556;
        System.out.println(x);
    }
}
```
Combining adjacent memory cells (cont.)

- Compile and run:

  ```
  >> javac test.java
  >> java test
  44
  ```

- This phenomenon is called **overflow** (memory does not have enough space to represent the value)

 This is the *same* phenomenon when you try to compute $1/0$ with a calculator; except that the calculator was *programmed* (by the manufacturer) to *reported the error* (and the computer is *not*).
Combining adjacent memory cells (cont.)

- The computer can combine adjacent bytes (memory cells) and use it as a larger memory cell

Schematically:

2 bytes:

```
  0 0 0 0
  0 0 0 0
```

one 16-bits memory cell:

```
  0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0
```

A 16 bits memory cell can store one of $2^{16} = 65536$ different patterns.
Therefore, it can represent (larger) numbers ranging from: 0 − 65535.
Combining adjacent memory cells (cont.)

• Example: how a computer can use 2 consecutive bytes as a 16 bits memory cell:

```
address of memory cell  RAM (memory)
000...000  00001101
000...001  00000011
000...010  00000000
000...011  00101101
```

= 3331 (decimal)

• The bytes at address 0 and address 1 can be interpreted as a 16 bits memory cell (with address 0)
Combining adjacent memory cells (cont.)

• When the computer accesses the RAM memory, it specifies:
 • The memory location (address)
 • The number of bytes it needs
Combining adjacent memory cells (cont.)

• The computer can also:

• combine 4 consecutive bytes and use them as a 32 bits memory cell
 • Such a memory call can represent numbers ranging from: 0 – (2^{32}-1) or 0 – 4294967295

• combine 8 consecutive bytes and use them as a 64 bits memory cell
 • Such a memory call can represent numbers ranging from: 0 – (2^{64}-1) or 0 – 18446744073709551615
Combining adjacent memory cells (cont.)

- There is **no need** (today) to combine **16 consecutive bytes** and use them as a **128 bits memory cell**
- But this may change in the future...