CS 171: Introduction to Computer Science II

Department of Mathematics and Computer Science

Li Xiong
Today

• Meet everybody in class
• Course overview
• Course logistics
• Surprise
Instructor and TA

• **Instructor**: Li Xiong (Dr. X, Dr. Xiong, Prof. X, Prof. Xiong)
 – Web: http://www.mathcs.emory.edu/~lxiong
 – Email: lxiong@emory.edu
 – Office Hours: TT 4pm – 5:30pm or by appt
 – Office: MSC E412

• **TA**: Tomasz Jucrzyk
 – Email: tjurczy@emory.edu
 – Office Hours: MWF TBA
 – E308 (Computing lab)
About Me

• Undergraduate teaching
 – CS170 Intro to CS I
 – CS171 Intro to CS II
 – CS377 Database systems

• Graduate teaching
 – CS550 Database systems
 – CS570 Data mining
 – CS573 Data privacy and security
 – CS730R Topics in Data and Information management – big data analytics

• Research
 – data privacy and security
 – information integration and informatics

• Industry experience (software engineer)
 – Startups
 – IBM internet security systems
Meet everyone in class

• Group introduction (3-5 people)
• Introducing your group
 – Names
 – Your goals for the course
 – Something interesting about your group
Today

• Meet everybody in class
• Course overview
• Course logistics
• Surprise
What the class is about

• A continuation of CS170
• Programming and problem solving, with applications
• Algorithms and algorithm analysis – methods to solve problems
• Data structures – methods to store and manage information
A day on the internet

- 294 billion emails are sent
- 2 million blog posts
- 172 million different people visit Facebook
 - 532 million statuses are being updated
 - 250 million photos are uploaded
- Twitter: 40 million
- LinkedIn: 22 million
- 22 million hours of TV shows and movies are watched on Netflix
- 864,000 hours of video are uploaded to YouTube
- 18.7 million hours of music is streamed on Pandora
- 35 million apps are downloaded
- 2 million search queries per minute on Google
-
What is an algorithm

• An algorithm is a method for solving a problem expressed as a sequence of steps that is suitable for execution by a computer (machine)

• Can be expressed in
 – natural languages
 – Flowcharts
 – Pseudocode
 – programming languages
...And that, in simple terms, is how you increase your ranking on search engines.”
What is an algorithm: example

• Determine if a number n is a prime number
What is an algorithm: example

• Determine if a number \(n \) is a prime number

• pseudocode:

\[
\begin{align*}
 k &= 2; \\
 \text{As long as } k < n \text{ do} \\
 &\{ 1. \text{Divide } n \text{ by } k \\
 &\text{ 2. If } n \text{ is divisible by } k, \text{ then return NO} \\
 &\text{ 3. Otherwise, increase } k \text{ by 1 } \} \\
 \text{return YES}
\end{align*}
\]
What is an algorithm: example

• Determine if a number \(n \) is a prime number

• pseudocode:

\[
\begin{align*}
k & = 2; \\
& \text{As long as } k < n \text{ do} \\
& \{ 1. \text{Divide } n \text{ by } k \\
& \quad 2. \text{If } n \text{ is divisible by } k, \text{ then return NO} \\
& \quad 3. \text{Otherwise, increase } k \text{ by 1} \}
\end{align*}
\]
return YES

• Java

```java
int k = 2;
while ( k++ < n ) {
    if ( n%k == 0) return false;
}
return true;
```
What is a data structure

- A data structure is a way for organizing and accessing data
- Example data structures
 - Arrays
 - Trees, Graphs
- We will learn
 - Fundamental data structures and their operations
 - How to implement some of them
 - How to evaluate them and decide when to use what
 - How to use Java’s provided data structures
Algorithms and data structures

• Algorithm + Data Structure = Program
 – An algorithm must use some data structure to store its information
 – An algorithm manipulates the data in the data structures in various ways

• To write a program
 – Design the data structures to store the information
 – Design the algorithm that uses the information to solve the problem
 – Implement the algorithm
Algorithms and data structures

“ I will, in fact, claim that the difference between a bad programmer and a good one is whether he considers his code or his data structures more important. Bad programmers worry about the code. Good programmers worry about data structures and their relationships.
”

— Linus Torvalds (creator of Linux)
Good Algorithms and Data Structures

• Good algorithms and data structures are keys to write a good program for solving a problem

• Think about maintaining a social network
 – A large number of profiles
 – Add/delete/modify profiles
 – Add/delete/modify relationships between profiles
 – Efficient search of user profiles
Good algorithms and data structures

• Need ways to measure “goodness” of data structures and algorithms

• Algorithm analysis
 – Runtime analysis, Big-O notation

• Other goodness metrics: space usage, power
Course topics

• Data structures
 – Fundamental data structures: arrays, linked lists
 – Operations (algorithms that maintain and use the data structure): search, insertion, deletion, sort
 – Abstract data types (a data structure with its associated operations): stacks, queues, trees, hash tables, graphs

• Algorithms
 – Fundamental algorithms: sort, search, recursion
 – Algorithm analysis: runtime complexity, Big-O notation

• Programming
 – Java programming techniques
 – Applications: scientific, recreational, social networks, etc.
XKCD says it better

College Activities:

- Usefulness to career success
- 900 hours of classes
- 400 hours of homework
- One weekend messing with Java
Today

• Meet everybody in class
• Course overview
• Course logistics
• Surprise
Communications

• URL: http://www.mathcs.emory.edu/~cs171000
 – Lecture slides, programs, readings, assignments, solutions, ...

• Email: cs171000-list@mathcs.emory.edu
 – Announcements, clarifications, ...
Textbook

• Algorithms, 4th Edition, Sedgewick and Wayne
• Book site: http://algs4.cs.princeton.edu
Workload

• ~6 programming assignments (individual)
• 1 programming project (team of up to 2 students)
• Assignment/project prep labs (not graded)
• Midterm and final exam
• Reading and class quizzes
Grading

• Programming assignments/projects 50%
• Midterm 20%
• Final 25%
• Quizzes 5%
Policies

• Exams
 – All exams must be taken promptly at the required time.
 – Rescheduling midterm is possible if the request is made at least a week prior to the exam date
 – Final can not be rescheduled.

• Late assignment policy
 – Late assignment will be accepted within 3 days of the due date and penalized 10% per day. No extensions will be given.
 – 2 late assignment allowances, each can be used to turn in a single late assignment within 3 days of the due date without penalty.

• Honor code
 – College Honor Code and Departmental Policy
 – No collaboration is allowed on individual programming assignments.
 – Every program assignment must have the following comment included at the top of the file.

 /*
 THIS CODE IS MY OWN WORK, IT WAS WRITTEN WITHOUT CONSULTING CODE WRITTEN BY OTHER STUDENTS. _Your_Name_Here_
 */
Study Strategy

• Come to class, think and participate
• Read the book or book site and play with the sample programs
• Come to office hours (TA and me)
• Start programming assignments early
• Think before program
• Enjoy and good luck!

1/15/2013
And now ...

- Meet everybody in class
- Course overview
- Course logistics
- **Pretest** *(does not count towards your grade)*