CS 171: Introduction to Computer Science II

Binary Search Trees
Binary Search Trees

- Symbol table applications
- BST definitions and terminologies
- Search and insert
- Traversal
- Ordered operations
- Delete
Symbol tables and search

• A symbol table is an abstract data type that associates a value with a key

• Primary operations:
 – Insert (put)
 – Search (get)

• An ordered symbol table is a symbol table in which the keys are Comparable objects (keys can be sorted)
Symbol table applications

<table>
<thead>
<tr>
<th>application</th>
<th>purpose of search</th>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dictionary</td>
<td>find definition</td>
<td>word</td>
<td>definition</td>
</tr>
<tr>
<td>book index</td>
<td>find relevant pages</td>
<td>term</td>
<td>list of page numbers</td>
</tr>
<tr>
<td>file share</td>
<td>find song to download</td>
<td>name of song</td>
<td>computer ID</td>
</tr>
<tr>
<td>account management</td>
<td>process transactions</td>
<td>account number</td>
<td>transaction details</td>
</tr>
<tr>
<td>web search</td>
<td>find relevant web pages</td>
<td>keyword</td>
<td>list of page names</td>
</tr>
<tr>
<td>compiler</td>
<td>find type and value</td>
<td>variable name</td>
<td>type and value</td>
</tr>
</tbody>
</table>

Typical symbol-table applications
Elementary symbol tables

• Using unordered linked list
 – Sequential search: $O(N)$
 – Insert (replace old value if key exists): $O(N)$
 http://algs4.cs.princeton.edu/31elementary/SequentialSearchST.java.html

• Using ordered array
 – Binary search: $O(\log N)$
 – Insert (need array resizing): $O(N)$
 http://algs4.cs.princeton.edu/31elementary/BinarySearchST.java.html
Binary search trees

• Generalized from linked list
 – Using two links per node

• Advantage
 – Fast to search and insert
 – Dynamic data structure

• Combines the flexibility of insertion in linked lists with the efficiency of search in an ordered array
Trees

• What is a tree?
 – **Nodes**: store data and links
 – **Edges**: links, typically directional
• The tree has a top node: **root node**
• The structure looks like reversed from real trees.
Terminology

- **Root**: The topmost node in the tree.
- **B is the parent of D and E**: B is the parent node of D and E.
- **E is the right child of B**: E is the right child of B.
- **D is the left child of B**: D is the left child of B.
- **A subtree with F as its root**: The subtree with F as its root is connected to Level 3.
- **The dashed line is a path**: A dashed line indicates a path in the tree.
Terminology

• Root
 – The node at the top of the tree.
 – There is only one root.

• Path
 – The sequence of nodes traversed by traveling from the root to a particular node.
 – Each path is unique
Terminology

• **Parent**
 – The node that points to the given node.
 – Any node, except the root, has 1 and only 1 parent.

• **Child (Children)**
 – Nodes that are pointed to by the given node.

• **Leaf**
 – A node that has no children is called a leaf.
 – There can be many leaves in a tree.
Terminology

• **Interior node**
 – An interior node has at least one child.

• **Subtree**
 – Any node can be considered the root of a subtree.
 – It consists of all descendants of the current node.

• **Visit**
 – Checking the node value, display node value etc.

• **Traverse**
 – Visit all nodes in some specific order.
 – For example: visit all nodes in ascending key value.
Terminology

• **Levels**
 – The path length from root to the current node.
 – Recall that each path is unique.
 – Root is at level 0.

• **Height**
 – The maximum level in a tree.
 – $O(\log N)$ for a reasonably balanced tree.

• **Keys**
 – Each node stores a key value and associated data.
Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:
- Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node’s key is:
- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.
BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:
- A Key and a value.
- A reference to the left and right subtree.

```java
private class Node
{
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val)
    {
        this.key = key;
        this.val = val;
    }
}
```

Key and value are generic types; Key is Comparable
BST implementation (skeleton)

```java
public class BST<Key extends Comparable<Key>, Value> {
    private Node root;

    private class Node {
        /* see previous slide */
    }

    public void put(Key key, Value val) {
        /* see next slides */
    }

    public Value get(Key key) {
        /* see next slides */
    }

    public void delete(Key key) {
        /* see next slides */
    }

    public Iterable<Key> iterator() {
        /* see next slides */
    }
}
```
Binary Search Trees

- Symbol table applications
- BST definitions and terminologies
- Search and insert
 - get(Key key)
 - put(Key key, Value value)
- Traversal
- Ordered operations
- Delete
BST search

Get. Return value corresponding to given key, or null if no such key.

- **successful search for R**
 - black nodes could match the search key
 - R is less than S so look to the left
 - R is greater than E so look to the right
 - gray nodes cannot match the search key
 - found R (search hit) so return value

- **unsuccessful search for T**
 - T is greater than S so look to the right
 - T is less than X so look to the left
 - link is null so T is not in tree (search miss)
BST Demo

BST Search - Iterative

Get. Return value corresponding to given key, or null if no such key.

```java
public Value get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Cost. Number of compares is equal to 1 + depth of node.
BST Search - Recursive

BST insert

Put. Associate value with key.

Search for key, then two cases:
- Key in tree \Rightarrow reset value.
- Key not in tree \Rightarrow add new node.
BST Insert - Recursive

Put. Associate value with key.

```
public void put(Key key, Value val)
{   root = put(root, key, val); }

private Node put(Node x, Key key, Value val)
{
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        x.left = put(x.left, key, val);
    else if (cmp > 0)
        x.right = put(x.right, key, val);
    else if (cmp == 0)
        x.val = val;
    return x;
}
```

Cost. Number of compares is equal to 1 + depth of node.

Concise, but tricky, recursive code; read carefully!
Bonus Question

• Insert the following keys (in the order) into an empty BST tree
• Case 1
• Case 2
 – S, E, A, C, X, R, H
• Case 3
BST Analysis

- Search cost
- Insertion cost
Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert is equal to $1 + \text{depth of node}$.

Remark. Tree shape depends on order of insertion.
BST insertion: random order

Observation. If keys inserted in random order, tree stays relatively flat.
BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of compares for a search/insert is $\sim 2 \ln N$.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order, expected height of tree is $\sim 4.311 \ln N$.

But... Worst-case height is N.
(exponentially small chance when keys are inserted in random order)
Correspondence between BSTs and quicksort partitioning

Remark. Correspondence is 1-1 if array has no duplicate keys.
ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Guarantee</th>
<th>Average Case</th>
<th>Ordered Ops?</th>
<th>Operations on Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
<td>N</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>lg N</td>
<td>N/2</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
<td>1.39 lg N</td>
</tr>
</tbody>
</table>
Hw5

- BST tree class (to be implemented)
 - BST tree node class
 - key (String type for short name)
 - value (MovieInfo type)
 - left and right children
 - root to the tree
 - methods
 - Insert()
 - findExact()
 - findPrefix()
- IndexTester (provided)
 - Creates an empty BST tree
 - Reads the input movies or actors files
 - Builds a MovieInfo object for each row, insert it into the BST tree
 - Asks for user search string and search for the MovieInfo object
Binary Search Trees

• Symbol tables
• Definitions and terminologies
• Search and insert
• Traversal
• Ordered operations
• Delete
Traversals

- Traversal: visit all nodes in certain order
- In-order
 - Left subtree, current node, right subtree
- Pre-order
 - Current node, left subtree, right subtree
- Post-order
 - Left subtree, right subtree, current node
Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

```java
public Iterable<Key> keys()
{
    Queue<Key> q = new Queue<Key>();
    inorder(root, q);
    return q;
}

private void inorder(Node x, Queue<Key> q)
{
    if (x == null) return;
    inorder(x.left, q);
    q.enqueue(x.key);
    inorder(x.right, q);
}
```

Property. Inorder traversal of a BST yields keys in ascending order.
Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.
Traversal

• In-order
 A C E H M R S X
• Pre-order?
• Post-order?
Traversals

- In-order
 A C E H M R S X
- Pre-order
 S E A C R H M X
- Post-order
 C A M H R E X S

- How to visit the nodes in descending order?
- What’s the use of pre-order and post-order traversal?
Expression Tree

- In-order traversal results in infix notation
- Post-order traversal results in postfix notation
- Pre-order traversal results in prefix notation

A tree that represents the expression
3 * ((7+1)/4) + (17 - 5)
The upward pointing arrows show how the value of the expression can be computed.
Binary Search Trees

• Symbol table application
• Definitions and terminologies
• Search and insert
• Traversal
• Ordered operations
 – Minimum and maximum
 – Rank: how many keys < a given key?
 – Select: key of given rank k
• Delete
Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?
Ordered operations

• Minimum and maximum
• Rank: how many keys < a given key?
• Select: key of a given rank k?
Subtree counts

In each node, we store the number of nodes in the subtree rooted at that node. To implement `size()`, return the count at the root.

Remark. This facilitates efficient implementation of `rank()` and `select()`.
private class Node
{
 private Key key;
 private Value val;
 private Node left;
 private Node right;
 private int N;
}

public int size()
{
 return size(root);
}

private int size(Node x)
{
 if (x == null) return 0;
 return x.N;
}

private Node put(Node x, Key key, Value val)
{
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else if (cmp == 0) x.val = val;
 x.N = 1 + size(x.left) + size(x.right);
 return x;
}
Rank

• Rank(Key key, Node x): how many keys < given key?

• Recursive algorithm
 – (Base) Case 1: tree is empty
 – (Base) Case 2: key == node key
 – Case 3: key < node key
 – Case 4: key > node key
public int rank(Key key)
{
 return rank(key, root);
}

private int rank(Key key, Node x)
{
 if (x == null) return 0;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) return rank(key, x.left);
 else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
 else if (cmp == 0) return size(x.left);
Selection

Select. Key of given rank.

- Recursive algorithm
 - (Base) Case 1: tree is empty
 - (Base) Case 2: key in current node
 - Case 3: key in left tree
 - Case 4: key in right tree
Selection

Select. Key of given rank.

```java
public Key select(int k) {
    if (k < 0) return null;
    if (k >= size()) return null;
    Node x = select(root, k);
    return x.key;
}
```

```java
private Node select(Node x, int k) {
    if (x == null) return null;
    int t = size(x.left);
    if (t > k)
        return select(x.left, k);
    else if (t < k)
        return select(x.right, k-t-1);
    else if (t == k)
        return x;
}
```
Binary Search Trees

- Definitions and terminologies
- Search and insert
- Traversal
- Ordered operations
- Delete
 - Delete minimum and maximum
 - Delete a given key
Delete minimum
Deleting the minimum

To delete the minimum key:
- Go left until finding a node with a null left link.
- Replace that node by its right link.
- Update subtree counts.

```java
public void deleteMin()
{    root = deleteMin(root); }

private Node deleteMin(Node x)
{
    if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
    x.N = 1 + size(x.left) + size(x.right);
    return x;
}
```
Binary Search Trees

• Definitions and terminologies
• Search and insert
• Traversal
• Ordered operations
• Delete
 – Delete minimum and maximum
 – Delete a given key
Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 0. [0 children]
Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.
Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child]
Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.
Hibbard deletion

To delete a node with key \(k \): search for node \(t \) containing key \(k \).

Case 2. [2 children]
Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]
- Find successor x of t.
- Delete the minimum in t's right subtree.
- Put x in t's spot.

- x has no left child
- but don't garbage collect x
- still a BST
public void delete(Key key) {
 root = delete(root, key);
}

private Node delete(Node x, Key key) {
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = delete(x.left, key);
 else if (cmp > 0) x.right = delete(x.right, key);
 else {
 if (x.right == null) return x.left;

 Node t = x;
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.N = size(x.left) + size(x.right) + 1;
 return x;
}
Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) ⇒ \sqrt{N} per op.
Longstanding open problem. Simple and efficient delete for BSTs.
ST Implementations: Summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Guarantee</th>
<th>Average Case</th>
<th>Ordered Iteration?</th>
<th>Operations on Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>Sequential Search</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>(Linked List)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary Search</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>(Ordered Array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
</tbody>
</table>

Other operations also become √N if deletions allowed