CS171 Introduction to Computer Science II

Hash Tables
Search Table

- Sequential search using linked list
- Binary search using ordered arrays
- Binary search tree (BST)
Hashing: basic plan

Save items in a **key-indexed table** (index is a function of the key).

Hash function. Method for computing array index from key.

\[
\text{hash}("it") = 3
\]

Issues.
- Computing the hash function.
- Equality test: Method for checking whether two keys are equal.
Hashing: basic plan

Save items in a **key-indexed table** (index is a function of the key).

Hash function. Method for computing array index from key.

```
hash("it") = 3  
hash("times") = 3
```

Issues.

- Computing the hash function.
- Equality test: Method for checking whether two keys are equal.
- Collision resolution: Algorithm and data structure to handle two keys that hash to the same array index.

Classic space-time tradeoff.

- No space limitation: trivial hash function with key as index.
- No time limitation: trivial collision resolution with sequential search.
- Space and time limitations: hashing (the real world).
Hash Tables

• A hash table for a given key type consists of
 – Hash function h
 – Array (called table) of size N
Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.
- Efficiently computable.
- Each table index equally likely for each key.

Ex 1. Phone numbers.
- Bad: first three digits.
- Better: last three digits.

Ex 2. Social Security numbers.
- Bad: first three digits.
- Better: last three digits.

Practical challenge. Need different approach for each key type.
Example

- We design a hash table for storing entries as (SSN, Name), where SSN (social security number) is a nine-digit positive integer.
- Our hash table uses an array of size $N = 10,000$ and the hash function $h(x) =$ last four digits of x.

Hash Functions

• A hash function is usually specified as the composition of two functions:

 Hash code:
 h_1: keys \rightarrow integers

 Compression function:
 h_2: integers $\rightarrow [0, N - 1]$

• The hash code is applied first, and the compression function is applied next on the result, i.e.,
 $$h(x) = h_2(h_1(x))$$
Java's hash code conventions

All Java classes inherit a method `hashCode()`, which returns a 32-bit int.

Requirement. If `x.equals(y)`, then `(x.hashCode() == y.hashCode())`.

Highly desirable. If `!x.equals(y)`, then `(x.hashCode() != y.hashCode())`.

Default implementation. Memory address of `x`.

Trivial (but poor) implementation. Always return 17.

Customized implementations. Integer, Double, String, File, URL, Date, ...

User-defined types. Users are on their own.
Implementing hash code: strings

```java
public final class String {
    private final char[] s;
    ...

    public int hashCode() {
        int hash = 0;
        for (int i = 0; i < length(); i++)
            hash = s[i] + (31 * hash);
        return hash;
    }
}
```

- Horner's method to hash string of length L: L multiplies/adds.
- Equivalent to $h = 31^{L-1} \cdot s^0 + \ldots + 31^{2} \cdot s^{L-3} + 31^{1} \cdot s^{L-2} + 31^{0} \cdot s^{L-1}$.

Ex.

```java
String s = "call";
int code = s.hashCode();
```

$3045982 = 99 \cdot 31^3 + 97 \cdot 31^2 + 108 \cdot 31^1 + 108 \cdot 31^0$

$$= 108 + 31 \cdot (108 + 31 \cdot (97 + 31 \cdot (99)))$$
Implementing hash code: user-defined types

```java
public final class Transaction implements Comparable<Transaction> {
    private final String who;
    private final Date when;
    private final double amount;

    public Transaction(String who, Date when, double amount)
    { /* as before */ }

    public boolean equals(Object y)
    { /* as before */ }

    public int hashCode()
    {
        int hash = 17;
        hash = 31*hash + who.hashCode();
        hash = 31*hash + when.hashCode();
        hash = 31*hash + ((Double) amount).hashCode();
        return hash;
    }
}
```

- nonzero constant
- typically a small prime
- for reference types, use hashCode()
- for primitive types, use hashCode() of wrapper type
Hash code design

"Standard" recipe for user-defined types.

- Combine each significant field using the $31x + y$ rule.
- If field is a primitive type, use wrapper type `hashCode()`.
- If field is an array, apply to each element.
- If field is a reference type, use `hashCode()`.

\[\text{or use Arrays.deepHashCode()} \]
\[\text{applies rule recursively} \]

In practice. Recipe works reasonably well; used in Java libraries.
In theory. Need a theorem for each type to ensure reliability.

Basic rule. Need to use the whole key to compute hash code; consult an expert for state-of-the-art hash codes.
Modular hashing

Hash code. An int between -2^{31} and $2^{31}-1$.

Hash function. An int between 0 and $m-1$ (for use as array index).

```java
private int hash(Key key)
{    return key.hashCode() % M; }  
```

bug

```java
private int hash(Key key)
{    return Math.abs(key.hashCode()) % M; }  
```

1-in-a-billion bug

hashCode() of "polygenelubricants" is -2^{31}

```java
private int hash(Key key)
{    return (key.hashCode() & 0x7fffffff) % M; }  
```

correct
Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer between 0 and $M - 1$.

Bins and balls. Throw balls uniformly at random into M bins.

Hash value frequencies for words in Tale of Two Cities ($M = 97$)

Java's string data uniformly distribute the keys of Tale of Two Cities
Collision Handling

• Separate Chaining
• Linear Probing
Separate chaining ST

Use an array of $M < N$ linked lists. [H. P. Luhn, IBM 1953]

- Hash: map key to integer i between 0 and $M - 1$.
- Insert: put at front of i^{th} chain (if not already there).
- Search: only need to search i^{th} chain.
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered iteration?</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (linked list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.38 lg N</td>
</tr>
<tr>
<td>red-black tree</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>1.00 lg N</td>
</tr>
<tr>
<td>separate chaining</td>
<td>lg N *</td>
<td>lg N *</td>
<td>lg N *</td>
<td>3-5 *</td>
</tr>
</tbody>
</table>

* under uniform hashing assumption

Operations on keys
- equals(): linear time
- compareTo(): logarithmic time
Collision resolution: open addressing

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

```
st[0] : jocularly
st[1] : null
   ... null
st[30000] : browsing
```

linear probing (M = 30001, N = 15000)
Linear probing

Use an array of size $M > N$.

- **Hash:** map key to integer i between 0 and $M - 1$.
- **Insert:** put at table index i if free; if not try $i + 1$, $i + 2$, etc.
- **Search:** search table index i; if occupied but no match, try $i + 1$, $i + 2$, etc.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>S</th>
<th>H</th>
<th></th>
<th></th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

insert I
hash(I) = 11

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>S</th>
<th>H</th>
<th></th>
<th></th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

insert N
hash(N) = 8
Linear probing: trace of standard indexing client

<table>
<thead>
<tr>
<th>key</th>
<th>hash</th>
<th>value</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>6</td>
<td>0</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>2</td>
<td></td>
<td>A</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>14</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>4</td>
<td></td>
<td>A</td>
<td>C</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>14</td>
<td>10</td>
<td>P</td>
<td>M</td>
<td>A</td>
<td>C</td>
<td>S</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td>R</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>6</td>
<td>11</td>
<td>P</td>
<td>M</td>
<td>A</td>
<td>C</td>
<td>S</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td>R</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>12</td>
<td>P</td>
<td>M</td>
<td>A</td>
<td>C</td>
<td>S</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td>R</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Entries in red are new.
- Entries in gray are untouched.
- Keys in black are probes.
- Probe sequence wraps to 0.
- keys[] and vals[]
Linear probing ST implementation

```java
public class LinearProbingHashST<Key, Value> {

    private int M = 30001;
    private Value[] vals = (Value[]) new Object[M];
    private Key[] keys = (Key[]) new Object[M];

    private int hash(Key key) { /* as before */ }

    public void put(Key key, Value val) {
        int i;
        for (i = hash(key); keys[i] != null; i = (i+1) % M)
            if (keys[i].equals(key))
                break;
        keys[i] = key;
        vals[i] = val;
    }

    public Value get(Key key) {
        for (int i = hash(key); keys[i] != null; i = (i+1) % M)
            if (key.equals(keys[i]))
                return vals[i];
        return null;
    }
}
```
Separate chaining vs. linear probing

Separate chaining.
- Easier to implement delete.
- Performance degrades gracefully.
- Clustering less sensitive to poorly-designed hash function.

Linear probing.
- Less wasted space.
- Better cache performance.
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered iteration?</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (linked list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.38 lg N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red-black tree</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>1.00 lg N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>separate chaining</td>
<td>lg N *</td>
<td>lg N *</td>
<td>lg N *</td>
<td>3-5 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>linear probing</td>
<td>lg N *</td>
<td>lg N *</td>
<td>lg N *</td>
<td>3-5 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* under uniform hashing assumption
Hashing vs. balanced search trees

Hashing.
- Simpler to code.
- No effective alternative for unordered keys.
- Faster for simple keys (a few arithmetic ops versus $\log N$ compares).
- Better system support in Java for strings (e.g., cached hash code).

Balanced search trees.
- Stronger performance guarantee.
- Support for ordered ST operations.
- Easier to implement `compareTo()` correctly than `equals()` and `hashCode()`.

Java system includes both.