CS171 Introduction to Computer Science II

Graphs
Graphs

• Definitions
• Implementation/Representation of graphs

• Traversal and path finding
 – Depth-first search
 • Path finding
 – Breadth-first search
 • Path finding (shortest path)

• Additional applications
 – Connected component
 – Shortest path
Adjacency-list graph representation

Maintain vertex-indexed array of lists.
Traversing graphs

• Graph traversal: visit each vertex in the graph exactly once

• There are in general two ways to traverse a graph
 – Depth-first search (DFS): Uses a Stack or recursion
 • Begins at a node, explores as far as possible along each branch before backtracking
 – Breath-first search (BFS): uses a Queue
 • Begins at a node, explores all its neighboring nodes. Then for each of those nodes, explores their unexplored neighbor nodes, and so on
Maze exploration

Maze graphs.
- **Vertex** = intersection.
- **Edge** = passage.

Goal. Explore every intersection in the maze.
Depth-First Search (DFS) – Nonrecursive algorithm

• Push s onto a stack

• Repeat until the stack is empty:
 – remove the top vertex v, if not visited, mark as visited
 – add all v’s unvisited neighbors to the stack
Depth-first search

Goal. Systematically search through a graph.

Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked vertices w adjacent to v.

Typical applications. [ahead]

- Find all vertices connected to a given source vertex.
- Find a path between two vertices.
public class DepthFirstSearch
{
 private boolean[] marked;

 public DepthFirstSearch(Graph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 {
 if (!marked[w])
 dfs(G, w);
 }
 }

 public boolean marked(int v)
 { return marked[v]; } }

marked[v] = true if v connected to s
constructor marks vertices connected to s
recursive DFS does the work
client can ask whether vertex v is connected to s
Depth-first search

Goal. Find all vertices connected to s.

Idea. Mimic maze exploration.

Algorithm.
- Use recursion (ball of string).
- Mark each visited vertex.
- Return (retrace steps) when no unvisited options.

Data structure.
- boolean[] marked to mark visited vertices.
Graphs

• Definitions
• Implementation/Representation of graphs
• Traversal and path finding
 – Depth-first search
 • Path finding
 – Breadth-first search
 • Path finding (shortest path)
• Additional applications
 – Connected component
 – Shortest path
Maze exploration

Maze graphs.
- Vertex = intersection.
- Edge = passage.

Goal. Explore every intersection in the maze.
Pathfinding in graphs

Goal. Does there exist a path from s to t? If yes, find any such path.

```java
public class Paths {
    public Paths(Graph G, int s) { /* find paths in G from source s */
    }
    boolean hasPathTo(int v) { /* is there a path from s to v? */
    }
    Iterable<Integer> pathTo(int v) { /* path from s to v; null if no such path */
    }
}
```
Depth-first search (pathfinding)

Goal. Find paths to all vertices connected to a given source s.

Algorithm.
- Use recursion (ball of string).
- Mark each visited vertex by keeping track of edge taken to visit it.
- Return (retrace steps) when no unvisited options.

Data structures.
- $\text{boolean[]} \text{ marked}$ to mark visited vertices.
- $\text{int[]} \text{ edgeTo}$ to keep tree of paths.
- $(\text{edgeTo}[w] = v)$ means that edge v-w was taken to visit w the first time.
public class DepthFirstPaths
{
 private boolean[] marked;
 private int[] edgeTo;
 private final int s;

 public DepthFirstPaths(Graph G, int s)
 {
 marked = new boolean[G.V()];
 edgeTo = new int[G.V()];
 this.s = s;
 dfs(G, s);
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 {
 if (!marked[w])
 {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
 }

 public boolean hasPathTo(int v)
 public Iterable<Integer> pathTo(int v)
Depth-first search (pathfinding iterator)

`edgeTo[]` is a parent-link representation of a tree rooted at s.

![Graph](image.png)

<table>
<thead>
<tr>
<th>x</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3 5</td>
</tr>
<tr>
<td>2</td>
<td>2 3 5</td>
</tr>
<tr>
<td>0</td>
<td>0 2 3 5</td>
</tr>
</tbody>
</table>

```java
public boolean hasPathTo(int v) {
    return marked[v];
}

public Iterable<Integer> pathTo(int v) {
    if (!hasPathTo(v)) return null;
    Stack<Integer> path = new Stack<Integer>();
    for (int x = v; x != s; x = edgeTo[x])
        path.push(x);
    path.push(s);
    return path;
}
```
Graphs

• Definitions
• Implementation/Representation of graphs

• Traversal and path finding
 – Depth-first search
 • Path finding
 – Breadth-first search
 • Path finding (shortest path)

• Additional applications
 – Connected component
 – Shortest path
Breadth-first search

Depth-first search. Put unvisited vertices on a **stack**.

Breadth-first search. Put unvisited vertices on a **queue**.

Shortest path. Find path from s to t that uses **fewest number of edges**.

BFS (from source vertex s)

<table>
<thead>
<tr>
<th>Put s onto a FIFO queue, and mark s as visited.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeat until the queue is empty:</td>
</tr>
<tr>
<td>- remove the least recently added vertex v</td>
</tr>
<tr>
<td>- add each of v's unvisited neighbors to the queue,</td>
</tr>
<tr>
<td>and mark them as visited.</td>
</tr>
</tbody>
</table>

Intuition. BFS examines vertices in increasing distance from s.
private void bfs(Graph G, int s) {
 Queue<Integer> q = new Queue<Integer>();
 q.enqueue(s);
 marked[s] = true;
 while (!q.isEmpty()) {
 int v = q.dequeue();
 for (int w : G.adj(v))
 if (!marked[w]) {
 q.enqueue(w);
 marked[w] = true;
 edgeTo[w] = v;
 }
 }
}
Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from s in a connected graph in time proportional to $E + V$.

Pf.

- Correctness: queue always consists of zero or more vertices of distance k from s, followed by zero or more vertices of distance $k + 1$.

- Running time: each vertex connected to s is visited once.
Graphs

- Definitions
- Implementation/Representation of graphs
- Traversal and path finding
 - Depth-first search
 - Path finding
 - Breadth-first search
 - Path finding (shortest path)
- Additional applications
 - Shortest path
 - Connected component
Six degrees of separation

• Everyone is on average approximately six steps away, by way of introduction, from any other person on Earth
• Online social networks
 – Facebook: average distance is 4.74 (Nov 2011)
 – Twitter: average distance is 4.67
• Erdos number
• Bacon number
Breadth-first search application: Erdős numbers

Hand-drawing of part of the Erdős graph by Ron Graham
Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

http://oracleofbacon.org

Endless Games board game

SixDegrees iPhone App
Map Routing (Shortest Path)
Application: Web Search Engines

A Search Engine does three main things:

i. Gather the contents of all web pages (using a program called a crawler or spider)

ii. Organize the contents of the pages in a way that allows efficient retrieval (indexing)

iii. Take in a query, determine which pages match, and show the results (ranking and display of results)
Basic structure of a search engine:

Crawler → Index

Query: “computer” → Search.com

indexing → disks
Crawler

- fetches pages from the web
- starts at set of “seed pages”
- parses fetched pages for hyperlinks
- then follows those links
- variations:
 - recrawling
 - focused crawling
 - random walks
Breadth-First Crawl:

• Basic idea:
 - start at a set of known URLs
 - explore in “concentric circles” around these URLs

![Diagram of Breadth-First Crawl]

- start pages
- distance-one pages
- distance-two pages
Graphs

• Definitions
• Implementation/Representation of graphs
• Traversal and path finding
 – Depth-first search
 • Path finding
 – Breadth-first search
 • Path finding (shortest path)
• Additional applications
 – Shortest path
 – Connected component
Connectivity queries

Def. Vertices v and w are **connected** if there is a path between them.

Goal. Preprocess graph to answer queries: is v connected to w? in **constant** time.

<table>
<thead>
<tr>
<th>public class CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC(Graph G)</td>
</tr>
<tr>
<td>boolean connected(int v, int w)</td>
</tr>
<tr>
<td>int count()</td>
</tr>
<tr>
<td>int id(int v)</td>
</tr>
</tbody>
</table>
Connected components

The relation "is connected to" is an equivalence relation:
- Reflexive: v is connected to v.
- Symmetric: if v is connected to w, then w is connected to v.
- Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

3 connected components

Remark. Given connected components, can answer queries in constant time.
Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all vertices discovered as part of the same component.
public class CC
{
 private boolean marked[];
 private int[] id;
 private int count;

 public CC(Graph G)
 {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 for (int v = 0; v < G.V(); v++)
 {
 if (!marked[v])
 {
 dfs(G, v);
 count++;
 }
 }
 }

 public int count()
 {
 public int id(int v)
 }
 private void dfs(Graph G, int v)
Finding connected components with DFS (continued)

```java
public int count()
{   return count;   }

public int id(int v)
{   return id[v];   }

private void dfs(Graph G, int v)
{
   marked[v] = true;
   id[v] = count;
   for (int w : G.adj(v))
      if (!marked[w])
         dfs(G, w);
}
```

- number of components
- id of component containing v
- all vertices discovered in same call of dfs have same id
Finding connected components with DFS (trace)

<table>
<thead>
<tr>
<th>count</th>
<th>marked[]</th>
<th>id[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 T</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0 T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0 T</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0 T</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0 T</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0 T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0 T</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0 T</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0 T</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0 T</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0 T</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0 T</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0 T</td>
<td>0</td>
</tr>
</tbody>
</table>

DFS Tracing:
- dfs(0)
 - check 0
- dfs(6)
 - check 0
 - dfs(4)
 - check 4
 - done
- dfs(5)
 - check 5
 - done
- dfs(3)
 - check 4
 - done
- dfs(2)
 - check 0
 - done
- dfs(1)
 - check 0
 - done
Finding connected components with DFS (trace)

<table>
<thead>
<tr>
<th>count</th>
<th>marked[]</th>
<th>id[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>T T T T T T T T T T</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>T T T T T T T T T T</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>T T T T T T T T T T</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>T T T T T T T T T T</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>T T T T T T T T T T</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>T T T T T T T T T T</td>
<td>T</td>
</tr>
<tr>
<td>8</td>
<td>T T T T T T T T T T</td>
<td>T</td>
</tr>
<tr>
<td>9</td>
<td>T T T T T T T T T T</td>
<td>T</td>
</tr>
<tr>
<td>10</td>
<td>T T T T T T T T T T</td>
<td>T</td>
</tr>
<tr>
<td>11</td>
<td>T T T T T T T T T T</td>
<td>T</td>
</tr>
<tr>
<td>12</td>
<td>T T T T T T T T T T</td>
<td>T</td>
</tr>
</tbody>
</table>

The graph shown below illustrates the connected components found with DFS.
Connected components application: study spread of STDs

Relationship graph at "Jefferson High"