Analysis of Algorithms
Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics
Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like `System.currentTimeMillis()` to get an accurate measure of the actual running time
- Plot the results
Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult.
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used.
Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm `arrayMax(A, n)`

Input array `A` of `n` integers

Output maximum element of `A`

```
currentMax ← A[0]
for i ← 1 to n − 1 do
    if A[i] > currentMax then
        currentMax ← A[i]
return currentMax
```
Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces

- Method declaration
 Algorithm method (arg [, arg...])
 Input ...
 Output ...

- Method call
 var.method (arg [, arg...])

- Return value
 return expression

- Expressions
 ⇐ Assignment (like = in Java)
 = Equality testing (like == in Java)
 \(n^2 \) Superscripts and other mathematical formatting allowed
The Random Access Machine (RAM) Model

- A CPU
- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and accessing any cell in memory takes unit time.
Seven Important Functions

- Seven functions that often appear in algorithm analysis:
 - Constant \(\approx 1 \)
 - Logarithmic \(\approx \log n \)
 - Linear \(\approx n \)
 - N-Log-N \(\approx n \log n \)
 - Quadratic \(\approx n^2 \)
 - Cubic \(\approx n^3 \)
 - Exponential \(\approx 2^n \)

- In a log-log chart, the slope of the line corresponds to the growth rate.
Functions Graphed Using “Normal” Scale

- $g(n) = 1$
- $g(n) = \lg n$
- $g(n) = n$
- $g(n) = n^2$
- $g(n) = n^3$
- $g(n) = 2^n$

© 2010 Stallmann

Analysis of Algorithms
Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method
Counting Primitive Operations

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

Algorithm `arrayMax(A, n)`

```plaintext
currentMax ← A[0]
for i ← 1 to n − 1 do
    if A[i] > currentMax then
        currentMax ← A[i]
    { increment counter i }
return currentMax
```

<table>
<thead>
<tr>
<th># operations</th>
<th>2</th>
<th>2n</th>
<th>2(n − 1)</th>
<th>2(n − 1)</th>
<th>1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2n</td>
<td>(n − 1)</td>
<td>(n − 1)</td>
<td>1</td>
<td>8n − 2</td>
</tr>
</tbody>
</table>
Estimating Running Time

- Algorithm $arrayMax$ executes $8n - 2$ primitive operations in the worst case. Define:
 - $a =$ Time taken by the fastest primitive operation
 - $b =$ Time taken by the slowest primitive operation

- Let $T(n)$ be worst-case time of $arrayMax$. Then
 $$a (8n - 2) \leq T(n) \leq b(8n - 2)$$

- Hence, the running time $T(n)$ is bounded by two linear functions
Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects $T(n)$ by a constant factor, but
 - Does not alter the growth rate of $T(n)$

- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm $arrayMax$
Why Growth Rate Matters

<table>
<thead>
<tr>
<th>if runtime is...</th>
<th>time for n + 1</th>
<th>time for 2n</th>
<th>time for 4n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c \lg n$</td>
<td>$c \lg (n + 1)$</td>
<td>$c(\lg n + 1)$</td>
<td>$c(\lg n + 2)$</td>
</tr>
<tr>
<td>$c n$</td>
<td>$c(n + 1)$</td>
<td>$2c n$</td>
<td>$4c n$</td>
</tr>
<tr>
<td>$c n \lg n$</td>
<td>$\sim c n \lg n + c n$</td>
<td>$2c n \lg n + 2cn$</td>
<td>$4c n \lg n + 4cn$</td>
</tr>
<tr>
<td>$c n^2$</td>
<td>$\sim c n^2 + 2c n$</td>
<td>$4c n^2$</td>
<td>$16c n^2$</td>
</tr>
<tr>
<td>$c n^3$</td>
<td>$\sim c n^3 + 3c n^2$</td>
<td>$8c n^3$</td>
<td>$64c n^3$</td>
</tr>
<tr>
<td>$c 2^n$</td>
<td>$c 2^{n+1}$</td>
<td>$c 2^{2n}$</td>
<td>$c 2^{4n}$</td>
</tr>
</tbody>
</table>

Runtime quadruples when problem size doubles.
Comparison of Two Algorithms

Insertion sort is $\frac{n^2}{4}$

Merge sort is $2n \lg n$

Sort a million items?

- Insertion sort takes roughly 70 hours
- Merge sort takes roughly 40 seconds

This is a slow machine, but if 100 x as fast then it’s 40 minutes versus less than 0.5 seconds
The growth rate is not affected by
- constant factors or
- lower-order terms

Examples
- $10^2n + 10^5$ is a linear function
- $10^5n^2 + 10^8n$ is a quadratic function
Big-Oh Notation

- Given functions \(f(n) \) and \(g(n) \), we say that \(f(n) \) is \(O(g(n)) \) if there are positive constants \(c \) and \(n_0 \) such that
 \[
 f(n) \leq cg(n) \quad \text{for} \quad n \geq n_0
 \]

- Example: \(2n + 10 \) is \(O(n) \)
 - \(2n + 10 \leq cn \)
 - \((c - 2) n \geq 10\)
 - \(n \geq \frac{10}{c - 2} \)
 - Pick \(c = 3 \) and \(n_0 = 10 \)
Big-Oh Example

- Example: the function n^2 is not $O(n)$
 - $n^2 \leq cn$
 - $n \leq c$
 - The above inequality cannot be satisfied since c must be a constant
More Big-Oh Examples

- **7n - 2**
 7n - 2 is $O(n)$
 need $c > 0$ and $n_0 \geq 1$ such that $7n - 2 \leq c \cdot n$ for $n \geq n_0$
 this is true for $c = 7$ and $n_0 = 1$

- **3n^3 + 20n^2 + 5**
 3n^3 + 20n^2 + 5 is $O(n^3)$
 need $c > 0$ and $n_0 \geq 1$ such that $3n^3 + 20n^2 + 5 \leq c \cdot n^3$ for $n \geq n_0$
 this is true for $c = 4$ and $n_0 = 21$

- **3 log n + 5**
 3 log n + 5 is $O(\log n)$
 need $c > 0$ and $n_0 \geq 1$ such that $3 \log n + 5 \leq c \cdot \log n$ for $n \geq n_0$
 this is true for $c = 8$ and $n_0 = 2$
Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function.

- The statement “\(f(n) \) is \(O(g(n)) \)” means that the growth rate of \(f(n) \) is no more than the growth rate of \(g(n) \).

- We can use the big-Oh notation to rank functions according to their growth rate.

<table>
<thead>
<tr>
<th></th>
<th>(f(n)) is (O(g(n)))</th>
<th>(g(n)) is (O(f(n)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(n)) grows more</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(f(n)) grows more</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Same growth</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Big-Oh Rules

- If is $f(n)$ a polynomial of degree d, then $f(n)$ is $O(n^d)$, i.e.,
 1. Drop lower-order terms
 2. Drop constant factors
- Use the smallest possible class of functions
 - Say “$2n$ is $O(n)$” instead of “$2n$ is $O(n^2)$”
- Use the simplest expression of the class
 - Say “$3n + 5$ is $O(n)$” instead of “$3n + 5$ is $O(3n)$”
Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation.
- To perform the asymptotic analysis:
 - We find the worst-case number of primitive operations executed as a function of the input size.
 - We express this function with big-Oh notation.
- Example:
 - We determine that algorithm arrayMax executes at most $8n - 2$ primitive operations.
 - We say that algorithm arrayMax “runs in $O(n)$ time”.
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations.
Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages.
- The i-th prefix average of an array X is average of the first $(i + 1)$ elements of X:
 \[A[i] = \frac{X[0] + X[1] + \ldots + X[i]}{i+1} \]
- Computing the array A of prefix averages of another array X has applications to financial analysis.

© 2010 Goodrich, Tamassia
Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition.

Algorithm \textit{prefixAverages1}(X, n)

\begin{itemize}
 \item Input array X of n integers
 \item Output array A of prefix averages of X
 \item A \leftarrow \text{new array of n integers}
 \item for \(i \leftarrow 0 \) to \(n - 1 \) do
 \begin{itemize}
 \item \(s \leftarrow X[0] \)
 \item for \(j \leftarrow 1 \) to \(i \) do
 \begin{itemize}
 \item \(s \leftarrow s + X[j] \)
 \item \(A[i] \leftarrow s / (i + 1) \)
 \end{itemize}
 \end{itemize}
 \item return A
\end{itemize}

© 2010 Goodrich, Tamassia
Arithmetic Progression

- The running time of \textit{prefixAverages1} is $O(1 + 2 + \ldots + n)$
- The sum of the first n integers is $n(n + 1)/2$
 - There is a simple visual proof of this fact
- Thus, algorithm \textit{prefixAverages1} runs in $O(n^2)$ time
Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum.

Algorithm \textit{prefixAverages2}(X, n)

\textbf{Input} array \(X\) of \(n\) integers

\textbf{Output} array \(A\) of prefix averages of \(X\)

\[
\begin{align*}
A & \leftarrow \text{new array of } n \text{ integers} \\
s & \leftarrow 0 \\
\text{for } i & \leftarrow 0 \text{ to } n - 1 \text{ do} \\
&s \leftarrow s + X[i] \\
&A[i] \leftarrow s / (i + 1) \\
\text{return } A
\end{align*}
\]

\(\text{Algorithm } \textit{prefixAverages2} \text{ runs in } O(n) \text{ time}\)

© 2010 Goodrich, Tamassia
Math you need to Review

- Summations
- Logarithms and Exponents

- **properties of logarithms:**
 \[\log_b(xy) = \log_b x + \log_b y \]
 \[\log_b (x/y) = \log_b x - \log_b y \]
 \[\log_b xa = a\log_b x \]
 \[\log_b a = \log_x a / \log_x b \]

- **properties of exponentials:**
 \[a^{(b+c)} = a^b a^c \]
 \[a^{bc} = (a^b)^c \]
 \[a^b / a^c = a^{(b-c)} \]
 \[b = a^{\log_a b} \]
 \[b^c = a^{c\log_a b} \]
Relatives of Big-Oh

big-Omega
- \(f(n) \) is \(\Omega(g(n)) \) if there is a constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \) such that
 \[f(n) \geq c \cdot g(n) \] for \(n \geq n_0 \)

big-Theta
- \(f(n) \) is \(\Theta(g(n)) \) if there are constants \(c' > 0 \) and \(c'' > 0 \) and an integer constant \(n_0 \geq 1 \) such that
 \[c' \cdot g(n) \leq f(n) \leq c'' \cdot g(n) \] for \(n \geq n_0 \)
Intuition for Asymptotic Notation

Big-Oh
- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$

big-Omega
- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$

big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$
Example Uses of the Relatives of Big-Oh

- $5n^2$ is $\Omega(n^2)$

 $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

 Let $c = 5$ and $n_0 = 1$

- $5n^2$ is $\Omega(n)$

 $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

 Let $c = 1$ and $n_0 = 1$

- $5n^2$ is $\Theta(n^2)$

 $f(n)$ is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that $f(n)$ is $O(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \leq c \cdot g(n)$ for $n \geq n_0$

 Let $c = 5$ and $n_0 = 1$