AVL Trees
AVL Tree Definition

- AVL trees are balanced
- An AVL Tree is a binary search tree such that for every internal node \(v \) of \(T \), the heights of the children of \(v \) can differ by at most 1

An example of an AVL tree where the heights are shown next to the nodes:
Height of an AVL Tree

Fact: The height of an AVL tree storing n keys is $O(\log n)$.

Proof: Let us bound $n(h)$: the minimum number of internal nodes of an AVL tree of height h.

We easily see that $n(1) = 1$ and $n(2) = 2$.

For $n > 2$, an AVL tree of height h contains the root node, one AVL subtree of height $n-1$ and another of height $n-2$.

That is, $n(h) = 1 + n(h-1) + n(h-2)$.

Knowing $n(h-1) > n(h-2)$, we get $n(h) > 2n(h-2)$. So

$n(h) > 2n(h-2), \quad n(h) > 4n(h-4), \quad n(h) > 8n(n-6), \ldots$ (by induction),

$n(h) > 2^i n(h-2i)$

Solving the base case we get: $n(h) > 2^{h/2-1}$

Taking logarithms: $h < 2\log n(h) + 2$

Thus the height of an AVL tree is $O(\log n)$.
Insertion

- Insertion is as in a binary search tree.
- Always done by expanding an external node.

Example:

Before insertion:
- Tree with nodes 17, 78, 32, 50, 88, 48, 62, 44.

After insertion:
- Tree with nodes 17, 78, 32, 50, 88, 48, 62, 54, 44.
Trinode Restructuring

- Let \((a, b, c)\) be an inorder listing of \(x, y, z\)
- Perform the rotations needed to make \(b\) the topmost node of the three

case 1: single rotation (a left rotation about \(a\))

case 2: double rotation (a right rotation about \(c\), then a left rotation about \(a\))

(Other two cases are symmetrical)
Insertion Example, continued

unbalanced...

...balanced
Restructuring (as Single Rotations)

Single Rotations:

1. \(T_0 \) \(T_1 \) \(T_2 \) \(T_3 \)
 - \(a = z \)
 - \(b = y \)
 - \(c = x \)

2. \(T_2 \) \(T_3 \)
 - \(a = x \)
 - \(b = y \)
 - \(c = z \)

3. \(T_0 \) \(T_1 \) \(T_2 \) \(T_3 \)
 - \(a = z \)
 - \(b = y \)
 - \(c = x \)

4. \(T_0 \) \(T_1 \) \(T_2 \) \(T_3 \)
 - \(a = x \)
 - \(b = y \)
 - \(c = z \)
Restructuring (as Double Rotations)

double rotations:

\[
\begin{array}{c}
\text{double rotation:} \\
\begin{array}{c}
\text{a = z} \\
\text{b = x} \\
\text{c = y}
\end{array}
\end{array}
\]
Removal

Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, w, may cause an imbalance.

Example:

before deletion of 32

after deletion
Rebalancing after a Removal

Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.

We perform $\text{restructure}(x)$ to restore balance at z.

As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.
AVL Tree Performance

- a single restructure takes $O(1)$ time
 - using a linked-structure binary tree
- get takes $O(\log n)$ time
 - height of tree is $O(\log n)$, no restructures needed
- put takes $O(\log n)$ time
 - initial find is $O(\log n)$
 - Restructuring up the tree, maintaining heights is $O(\log n)$
- remove takes $O(\log n)$ time
 - initial find is $O(\log n)$
 - Restructuring up the tree, maintaining heights is $O(\log n)$