Hash Tables
Recall the Map ADT

- **get**(k): if the map M has an entry with key k, return its associated value; else, return null
- **put**(k, v): insert entry (k, v) into the map M; if key k is not already in M, then return **null**; else, return old value associated with k
- **remove**(k): if the map M has an entry with key k, remove it from M and return its associated value; else, return null
- **size()**, **isEmpty()**
- **entrySet()**: return an iterable collection of the entries in M
- **keySet()**: return an iterable collection of the keys in M
- **values()**: return an iterator of the values in M
Hash Functions and Hash Tables

- A hash function h maps keys of a given type to integers in a fixed interval $[0, N - 1]$

- Example:

 \[h(x) = x \mod N \]

 is a hash function for integer keys

- The integer $h(x)$ is called the hash value of key x

- A hash table for a given key type consists of
 - Hash function h
 - Array (called table) of size N

- When implementing a map with a hash table, the goal is to store item (k, o) at index $i = h(k)$
Example

- We design a hash table for a map storing entries as (SSN, Name), where SSN (social security number) is a nine-digit positive integer.
- Our hash table uses an array of size \(N = 10,000 \) and the hash function
 \[h(x) = \text{last four digits of } x \]
Hash Functions

- A hash function is usually specified as the composition of two functions:
 - **Hash code:**
 - \(h_1 \): keys \(\rightarrow \) integers
 - **Compression function:**
 - \(h_2 \): integers \(\rightarrow \) \([0, N - 1]\)

- The hash code is applied first, and the compression function is applied next on the result, i.e.,
 \[
 h(x) = h_2(h_1(x))
 \]
- The goal of the hash function is to “disperse” the keys in an apparently random way.
Hash Codes

- **Memory address:**
 - We reinterpret the memory address of the key object as an integer (default hash code of all Java objects)
 - Good in general, except for numeric and string keys

- **Integer cast:**
 - We reinterpret the bits of the key as an integer
 - Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in Java)

- **Component sum:**
 - We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components (ignoring overflows)
 - Suitable for numeric keys of fixed length greater than or equal to the number of bits of the integer type (e.g., long and double in Java)
Polynomial accumulation:
- We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits)
 \[a_0 a_1 \ldots a_{n-1}\]
- We evaluate the polynomial
 \[p(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_{n-1}z^{n-1}\]
at a fixed value \(z\), ignoring overflows
- Especially suitable for strings (e.g., the choice \(z = 33\) gives at most 6 collisions on a set of 50,000 English words)

Polynomial \(p(z)\) can be evaluated in \(O(n)\) time using Horner’s rule:
- The following polynomials are successively computed, each from the previous one in \(O(1)\) time
 \[p_0(z) = a_{n-1}\]
 \[p_i(z) = a_{n-i-1} + zp_{i-1}(z) \quad (i = 1, 2, \ldots, n-1)\]
- We have \(p(z) = p_{n-1}(z)\)
Compression Functions

- **Division:**
 - \(h_2(y) = y \mod N \)
 - The size \(N \) of the hash table is usually chosen to be a prime
 - The reason has to do with number theory and is beyond the scope of this course

- **Multiply, Add and Divide (MAD):**
 - \(h_2(y) = (ay + b) \mod N \)
 - \(a \) and \(b \) are nonnegative integers such that \(a \mod N \neq 0 \)
 - Otherwise, every integer would map to the same value \(b \)
Collision Handling

- Collisions occur when different elements are mapped to the same cell
- **Separate Chaining:** let each cell in the table point to a linked list of entries that map there
- Separate chaining is simple, but requires additional memory outside the table

```
0  Ø
1  025-612-0001
2  Ø
3  Ø
4  451-229-0004  981-101-0004
```
Map with Separate Chaining

Delegate operations to a list-based map at each cell:

Algorithm \texttt{get}(k):
\begin{algorithm}
\textbf{return} A[h(k)].get(k)
\end{algorithm}

Algorithm \texttt{put}(k,v):
\begin{algorithm}
t = A[h(k)].put(k,v)
\textbf{if} t = \textbf{null} \textbf{then}
\hspace{1em} n = n + 1
\textbf{return} t
\end{algorithm}

Algorithm \texttt{remove}(k):
\begin{algorithm}
t = A[h(k)].remove(k)
\textbf{if} t \neq \textbf{null} \textbf{then}
\hspace{1em} n = n - 1
\textbf{return} t
\end{algorithm}
Linear Probing

- **Open addressing:** the colliding item is placed in a different cell of the table
- **Linear probing:** handles collisions by placing the colliding item in the next (circularly) available table cell
- Each table cell inspected is referred to as a “probe”
- Colliding items lump together, causing future collisions to cause a longer sequence of probes

Example:
- \(h(x) = x \mod 13 \)
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order
Search with Linear Probing

- Consider a hash table A that uses linear probing

 get(k)

 - We start at cell $h(k)$
 - We probe consecutive locations until one of the following occurs
 - An item with key k is found, or
 - An empty cell is found, or
 - N cells have been unsuccessfully probed

 Algorithm get(k)

 $i \leftarrow h(k)$
 $p \leftarrow 0$
 repeat
 $c \leftarrow A[i]$
 if $c = \emptyset$
 return null
 else if $c.getKey() = k$
 return $c getValue()$
 else
 $i \leftarrow (i + 1) \mod N$
 $p \leftarrow p + 1$
 until $p = N$
 return null
Updates with Linear Probing

- To handle insertions and deletions, we introduce a special object, called AVAILABLE, which replaces deleted elements.

- **remove**(*k*)
 - We search for an entry with key *k*.
 - If such an entry (*k, o*) is found, we replace it with the special item AVAILABLE and we return element *o*.
 - Else, we return null.

- **put**(*k, o*)
 - We throw an exception if the table is full.
 - We start at cell *h(k)*.
 - We probe consecutive cells until one of the following occurs:
 - A cell *i* is found that is either empty or stores AVAILABLE, or
 - *N* cells have been unsuccessfully probed.
 - We store (*k, o*) in cell *i*.

© 2010 Goodrich, Tamassia
Double Hashing

- Double hashing uses a secondary hash function $d(k)$ and handles collisions by placing an item in the first available cell of the series $(i + jd(k)) \mod N$ for $j = 0, 1, \ldots, N - 1$
- The secondary hash function $d(k)$ cannot have zero values
- The table size N must be a prime to allow probing of all the cells

- Common choice of compression function for the secondary hash function:
 \[d_2(k) = q - k \mod q \]
 where
 - $q < N$
 - q is a prime
- The possible values for $d_2(k)$ are $1, 2, \ldots, q$
Consider a hash table storing integer keys that handles collision with double hashing

- \(N = 13 \)
- \(h(k) = k \mod 13 \)
- \(d(k) = 7 - k \mod 7 \)

Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order
Performance of Hashing

- In the worst case, searches, insertions and removals on a hash table take $O(n)$ time.
- The worst case occurs when all the keys inserted into the map collide.
- The load factor $\alpha = \frac{n}{N}$ affects the performance of a hash table.
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is $\frac{1}{1 - \alpha}$.
- The expected running time of all the dictionary ADT operations in a hash table is $O(1)$.
- In practice, hashing is very fast provided the load factor is not close to 100%.
- Applications of hash tables:
 - small databases
 - compilers
 - browser caches