Pattern Matching
Strings

- A string is a sequence of characters
- Examples of strings:
 - Java program
 - HTML document
 - DNA sequence
 - Digitized image
- An alphabet Σ is the set of possible characters for a family of strings
- Example of alphabets:
 - ASCII
 - Unicode
 - $\{0, 1\}$
 - $\{A, C, G, T\}$

Let P be a string of size m
- A substring $P[i..j]$ of P is the subsequence of P consisting of the characters with ranks between i and j
- A prefix of P is a substring of the type $P[0..i]$
- A suffix of P is a substring of the type $P[i..m-1]$

Given strings T (text) and P (pattern), the pattern matching problem consists of finding a substring of T equal to P

Applications:
- Text editors
- Search engines
- Biological research
Brute-Force Pattern Matching

- The brute-force pattern matching algorithm compares the pattern P with the text T for each possible shift of P relative to T, until either
 - a match is found, or
 - all placements of the pattern have been tried

- Brute-force pattern matching runs in time $O(nm)$

- Example of worst case:
 - $T = \text{aaa} \ldots \text{ah}$
 - $P = \text{aaah}$
 - may occur in images and DNA sequences
 - unlikely in English text

Algorithm $\text{BruteForceMatch}(T, P)$

Input text T of size n and pattern P of size m

Output starting index of a substring of T equal to P or -1 if no such substring exists

for $i \leftarrow 0$ to $n - m$

\{ test shift i of the pattern \}

$j \leftarrow 0$

while $j < m \land T[i + j] = P[j]$

\[j \leftarrow j + 1 \]

if $j = m$

\{ match at i \}

return i

else

break while loop \{ mismatch \}

return -1 \{ no match anywhere \}
Boyer-Moore Heuristics

The Boyer-Moore’s pattern matching algorithm is based on two heuristics

Looking-glass heuristic: Compare P with a subsequence of T moving backwards

Character-jump heuristic: When a mismatch occurs at $T[i] = c$
- If P contains c, shift P to align the last occurrence of c in P with $T[i]$
- Else, shift P to align $P[0]$ with $T[i + 1]$

Example

a	p	a	t	t	e	r	n	m	a	t	c	h	i	n	g	a	l	g	o	r	i	t	h	m
r	i	t	h	m	1	r	i	t	h	m	3	r	i	t	h	m	5	11	10	9	8	7		
r	i	t	h	m	2	r	i	t	h	m	4	r	i	t	h	m	6	r	i	t	h	m		
Last-Occurrence Function

Boyer-Moore’s algorithm preprocesses the pattern P and the alphabet Σ to build the last-occurrence function L mapping Σ to integers, where $L(c)$ is defined as:

- the largest index i such that $P[i] = c$ or
- -1 if no such index exists

Example:

- $\Sigma = \{a, b, c, d\}$
- $P = abacab$

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(c)$</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

The last-occurrence function can be represented by an array indexed by the numeric codes of the characters.

The last-occurrence function can be computed in time $O(m + s)$, where m is the size of P and s is the size of Σ.
The Boyer-Moore Algorithm

Algorithm BoyerMooreMatch(\(T, P, \Sigma\))
\[
L \leftarrow \text{lastOccurrenceFunction}(P, \Sigma)
\]
\[
i \leftarrow m - 1
\]
\[
j \leftarrow m - 1
\]
repeat
 if \(T[i] = P[j]\)
 if \(j = 0\)
 return \(i\) \{ match at \(i\) \}
 else
 \(i \leftarrow i - 1\)
 \(j \leftarrow j - 1\)
 else
 \{ character-jump \}
 \(l \leftarrow L[T[i]]\)
 \(i \leftarrow i + m - \min(j, 1 + l)\)
 \(j \leftarrow m - 1\)
until \(i > n - 1\)
return \(-1\) \{ no match \}

Case 1: \(j \leq 1 + l\)

Case 2: \(1 + l \leq j\)
Example
Analysis

- Boyer-Moore’s algorithm runs in time $O(nm + s)$
- Example of worst case:
 - $T = aaa \ldots a$
 - $P = baaa$
- The worst case may occur in images and DNA sequences but is unlikely in English text
- Boyer-Moore’s algorithm is significantly faster than the brute-force algorithm on English text
The KMP Algorithm

- Knuth-Morris-Pratt’s algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.
- When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons?
- Answer: the largest prefix of $P[0..j]$ that is a suffix of $P[1..j]$.

No need to repeat these comparisons
Resume comparing here
KMP Failure Function

Knuth-Morris-Pratt’s algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself.

The failure function $F(j)$ is defined as the size of the largest prefix of $P[0..j]$ that is also a suffix of $P[1..j]$.

Knuth-Morris-Pratt’s algorithm modifies the brute-force algorithm so that if a mismatch occurs at $P[j] \neq T[i]$ we set $j \leftarrow F(j - 1)$.
The KMP Algorithm

- The failure function can be represented by an array and can be computed in $O(m)$ time.
- At each iteration of the while-loop, either
 - i increases by one, or
 - the shift amount $i - j$ increases by at least one (observe that $F(j - 1) < j$)
- Hence, there are no more than $2n$ iterations of the while-loop
- Thus, KMP’s algorithm runs in optimal time $O(m + n)$

Algorithm $\text{KMPMatch}(T, P)$

```plaintext
F \leftarrow \text{failureFunction}(P)
i \leftarrow 0
j \leftarrow 0

\text{while } i < n
  \text{if } T[i] = P[j]
    \text{if } j = m - 1
      \text{return } i - j \{ \text{ match } \}
    \text{else}
      i \leftarrow i + 1
      j \leftarrow j + 1
  \text{else}
    \text{if } j > 0
      j \leftarrow F[j - 1]
    \text{else}
      i \leftarrow i + 1
  \text{return } -1 \{ \text{ no match } \}
```
Computing the Failure Function

- The failure function can be represented by an array and can be computed in $O(m)$ time.
- The construction is similar to the KMP algorithm itself.
- At each iteration of the while-loop, either
 - i increases by one, or
 - the shift amount $i - j$ increases by at least one (observe that $F(j - 1) < j$).
- Hence, there are no more than $2m$ iterations of the while-loop.

Algorithm $\text{failureFunction}(P)$

```plaintext
\begin{align*}
F[0] & \leftarrow 0 \\
i & \leftarrow 1 \\
j & \leftarrow 0 \\
\text{while } i < m \\
\quad & \text{if } P[i] = P[j] \\
\quad & \quad \{ \text{we have matched } j + 1 \text{ chars} \} \\
\quad & \quad F[i] \leftarrow j + 1 \\
\quad & \quad i \leftarrow i + 1 \\
\quad & \quad j \leftarrow j + 1 \\
\quad & \text{else if } j > 0 \text{ then} \\
\quad & \quad \{ \text{use failure function to shift } P \} \\
\quad & \quad j \leftarrow F[j - 1] \\
\quad & \text{else} \\
\quad & F[i] \leftarrow 0 \{ \text{ no match } \} \\
\quad & i \leftarrow i + 1
\end{align*}
```
Example

\[
\begin{array}{ccccccc}
 & a & b & a & c & a & a & b & a & c & c & a & b & a & c & a & b & a & a & b & b \\
1 & 2 & 3 & 4 & 5 & 6 \\
 & a & b & a & c & a & b \\
7 & a & b & a & c & a & b \\
 & 8 & 9 & 10 & 11 & 12 \\
 & a & b & a & c & a & b \\
 & 13 \\
 & a & b & a & c & a & b \\
 & 14 & 15 & 16 & 17 & 18 & 19 \\
 & a & b & a & c & a & b \\
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
j & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
P[j] & a & b & a & c & a & b \\
\hline
F(j) & 0 & 0 & 1 & 0 & 1 & 2 \\
\hline
\end{array}
\]