Quick-Sort

2 → 2

4 2 → 2 4

7 9 → 7 9
Quick-Sort

Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:

- **Divide**: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
- **Recur**: sort L and G
- **Conquer**: join L, E and G
Partition

We partition an input sequence as follows:

- We remove, in turn, each element \(y \) from \(S \) and
- We insert \(y \) into \(L \), \(E \) or \(G \), depending on the result of the comparison with the pivot \(x \)

Each insertion and removal is at the beginning or at the end of a sequence, and hence takes \(O(1) \) time

Thus, the partition step of quick-sort takes \(O(n) \) time

Algorithm \(partition(S, p) \)

Input sequence \(S \), position \(p \) of pivot

Output subsequences \(L \), \(E \), \(G \) of the elements of \(S \) less than, equal to, or greater than the pivot, resp.

\(L \), \(E \), \(G \) \(\leftarrow\) empty sequences

\(x \) \(\leftarrow\) \(S.remove(p) \)

while \(\neg S.isEmpty() \)

\(y \) \(\leftarrow\) \(S.remove(S.first()) \)

if \(y < x \)

\(L.addLast(y) \)

else if \(y = x \)

\(E.addLast(y) \)

else \{ \(y > x \) \}

\(G.addLast(y) \)

return \(L \), \(E \), \(G \)
Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree:
- Each node represents a recursive call of quick-sort and stores:
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

```
7 4 9 → 2 6 2 → 2 4 6 7 9
```

```
4 2 → 2 4 7 9 → 7 9
2 → 2 9 → 9
```
Execution Example

Pivot selection

7 2 9 4 3 7 6 1

© 2004 Goodrich, Tamassia
Execution Example (cont.)

Partition, recursive call, pivot selection

7 2 9 4 3 7 6 1

2 4 3 1

© 2004 Goodrich, Tamassia
Execution Example (cont.)

Partition, recursive call, base case

\[7 \ 2 \ 9 \ 4 \ 3 \ 7 \ 6 \ 1\]

\[2 \ 4 \ 3 \ 1\]

\[1 \rightarrow 1\]
Execution Example (cont.)

Recursive call, ..., base case, join

7 2 9 4 3 7 6 1

2 4 3 1 → 1 2 3 4

1 → 1

4 3 → 3 4

4 → 4
Execution Example (cont.)

Recursive call, pivot selection

7 2 9 4 3 7 6 1

2 4 3 1 → 1 2 3 4

1 → 1

4 3 → 3 4

4 → 4

7 9 7
Execution Example (cont.)

Partition, ..., recursive call, base case
Execution Example (cont.)

Join, join

```
7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9
2 4 3 1 → 1 2 3 4
4 3 → 3 4
1 → 1
4 → 4
7 9 7 → 7 7 9
9 → 9
```
The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element.

One of L and G has size $n - 1$ and the other has size 0.

The running time is proportional to the sum

$$n + (n - 1) + \ldots + 2 + 1$$

Thus, the worst-case running time of quick-sort is $O(n^2)$.

© 2004 Goodrich, Tamassia
Expected Running Time

Consider a recursive call of quick-sort on a sequence of size \(s \)

- **Good call:** the sizes of \(L \) and \(G \) are each less than \(\frac{3s}{4} \)
- **Bad call:** one of \(L \) and \(G \) has size greater than \(\frac{3s}{4} \)

A call is **good** with probability \(\frac{1}{2} \)

- \(\frac{1}{2} \) of the possible pivots cause good calls:

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
```

Bad pivots **Good pivots** **Bad pivots**
Expected Running Time, Part 2

- **Probabilistic Fact:** The expected number of coin tosses required in order to get k heads is $2k$
- For a node of depth i, we expect
 - $i/2$ ancestors are good calls
 - The size of the input sequence for the current call is at most $(3/4)^{i/2}n$

Therefore, we have
- For a node of depth $2\log_{4/3}n$, the expected input size is one
- The expected height of the quick-sort tree is $O(\log n)$
- The amount of work done at the nodes of the same depth is $O(n)$
- Thus, the expected running time of quick-sort is $O(n \log n)$

![Diagram showing expected height and time per level](image)
In-Place Quick-Sort

Quick-sort can be implemented to run in-place.

In the partition step, we use replace operations to rearrange the elements of the input sequence such that

- the elements less than the pivot have rank less than h
- the elements equal to the pivot have rank between h and k
- the elements greater than the pivot have rank greater than k

The recursive calls consider

- elements with rank less than h
- elements with rank greater than k

Algorithm `inPlaceQuickSort(S, l, r)`

- **Input** sequence S, ranks l and r
- **Output** sequence S with the elements of rank between l and r rearranged in increasing order

 - if $l \geq r$
 - return
 - $i \leftarrow$ a random integer between l and r
 - $x \leftarrow S elemAtRank(i)$
 - $(h, k) \leftarrow$ `inPlacePartition(x)`
 - `inPlaceQuickSort(S, l, h - 1)`
 - `inPlaceQuickSort(S, k + 1, r)`
In-Place Partitioning

Perform the partition using two indices to split S into L and $E \cup G$ (a similar method can split $E \cup G$ into E and G).

Repeat until j and k cross:
- Scan j to the right until finding an element $\geq x$.
- Scan k to the left until finding an element $< x$.
- Swap elements at indices j and k.

(pivot = 6)
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection-sort</td>
<td>$O(n^2)$</td>
<td>• in-place
• slow (good for small inputs)</td>
</tr>
<tr>
<td>insertion-sort</td>
<td>$O(n^2)$</td>
<td>• in-place
• slow (good for small inputs)</td>
</tr>
<tr>
<td>quick-sort</td>
<td>$O(n \log n)$</td>
<td>• in-place, randomized
• fastest (good for large inputs)</td>
</tr>
<tr>
<td>heap-sort</td>
<td>$O(n \log n)$</td>
<td>• in-place
• fast (good for large inputs)</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>• sequential data access
• fast (good for huge inputs)</td>
</tr>
</tbody>
</table>