Bucket-Sort and Radix-Sort

B

\[\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\emptyset & \emptyset \\
\end{array} \]

\[\begin{array}{ccccccc}
1, c & 3, a & 3, b & 7, d & 7, g & 7, e \\
\end{array} \]
Bucket-Sort

Let be S be a sequence of n (key, element) entries with keys in the range $[0, N - 1]$

Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets)

Phase 1: Empty sequence S by moving each entry (k, o) into its bucket $B[k]$

Phase 2: For $i = 0, ..., N - 1$, move the entries of bucket $B[i]$ to the end of sequence S

Analysis:
- Phase 1 takes $O(n)$ time
- Phase 2 takes $O(n + N)$ time
Bucket-sort takes $O(n + N)$ time

Algorithm $bucketSort(S, N)$

Input sequence S of (key, element) items with keys in the range $[0, N - 1]$

Output sequence S sorted by increasing keys

$B \leftarrow$ array of N empty sequences

while $\neg S.isEmpty()$

$f \leftarrow S.first()$

$(k, o) \leftarrow S.remove(f)$

$B[k].addLast((k, o))$

for $i \leftarrow 0$ to $N - 1$

while $\neg B[i].isEmpty()$

$f \leftarrow B[i].first()$

$(k, o) \leftarrow B[i].remove(f)$

$S.addLast((k, o))$
Example

Key range [0, 9]

Phase 1

Phase 2
Properties and Extensions

- **Key-type Property**
 - The keys are used as indices into an array and cannot be arbitrary objects
 - No external comparator

- **Stable Sort Property**
 - The relative order of any two items with the same key is preserved after the execution of the algorithm

Extensions

- Integer keys in the range \([a, b]\)
 - Put entry \((k, o)\) into bucket \(B[k - a]\)

- String keys from a set \(D\) of possible strings, where \(D\) has constant size (e.g., names of the 50 U.S. states)
 - Sort \(D\) and compute the rank \(r(k)\) of each string \(k\) of \(D\) in the sorted sequence
 - Put entry \((k, o)\) into bucket \(B[r(k)]\)
Lexicographic Order

A d-tuple is a sequence of d keys \((k_1, k_2, \ldots, k_d)\), where key \(k_i\) is said to be the i-th dimension of the tuple.

Example:
- The Cartesian coordinates of a point in space are a 3-tuple.

The lexicographic order of two d-tuples is recursively defined as follows:

\[(x_1, x_2, \ldots, x_d) < (y_1, y_2, \ldots, y_d) \iff x_1 < y_1 \lor (x_1 = y_1 \land (x_2, \ldots, x_d) < (y_2, \ldots, y_d))\]

I.e., the tuples are compared by the first dimension, then by the second dimension, etc.
Lexicographic-Sort

Let C_i be the comparator that compares two tuples by their i-th dimension.

Let $\text{stableSort}(S, C)$ be a stable sorting algorithm that uses comparator C.

Lexicographic-sort sorts a sequence of d-tuples in lexicographic order by executing d times algorithm stableSort, one per dimension.

Lexicographic-sort runs in $O(dT(n))$ time, where $T(n)$ is the running time of stableSort.

Algorithm lexicographicSort(S)

Input sequence S of d-tuples

Output sequence S sorted in lexicographic order

for $i \leftarrow d$ downto 1

$\text{stableSort}(S, C_i)$

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)
(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)
(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)
(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)
Radix-Sort

- Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension
- Radix-sort is applicable to tuples where the keys in each dimension i are integers in the range $[0, N - 1]$.
- Radix-sort runs in time $O(d(n + N))$.

Algorithm $\text{radixSort}(S, N)$

- **Input** sequence S of d-tuples such that $(0, \ldots, 0) \leq (x_1, \ldots, x_d)$ and $(x_1, \ldots, x_d) \leq (N - 1, \ldots, N - 1)$ for each tuple (x_1, \ldots, x_d) in S.
- **Output** sequence S sorted in lexicographic order.
- for $i \leftarrow d$ downto 1
 - $\text{bucketSort}(S, N)$
Radix-Sort for Binary Numbers

Consider a sequence of \(n \) \(b \)-bit integers
\[x = x_{b-1} \ldots x_1x_0 \]

We represent each element as a \(b \)-tuple of integers in the range \([0, 1]\) and apply radix-sort with \(N = 2 \)

This application of the radix-sort algorithm runs in \(O(bn) \) time

For example, we can sort a sequence of 32-bit integers in linear time

Algorithm \textit{binaryRadixSort}(S)

\begin{itemize}
 \item \textbf{Input} sequence \(S \) of \(b \)-bit integers
 \item \textbf{Output} sequence \(S \) sorted
 \item replace each element \(x \) of \(S \) with the item \((0, x)\)
 \item for \(i \leftarrow 0 \text{ to } b - 1 \)
 \item replace the key \(k \) of each item \((k, x)\) of \(S \) with bit \(x_i \) of \(x \)
\end{itemize}

\textit{bucketSort}(S, 2)
Example

Sorting a sequence of 4-bit integers

1001 → 0010 → 1110 → 1101 → 0001 → 1110 → 0010 → 1001 → 0001