Using Recursion
The Recursion Pattern

- **Recursion**: when a method calls itself
- Classic example--the factorial function:
 - \[n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n \]
- Recursive definition:

 \[
 f(n) = \begin{cases}
 1 & \text{if } n = 0 \\
 n \cdot f(n-1) & \text{else}
 \end{cases}
 \]

- As a Java method:
  ```java
  public static int recursiveFactorial(int n) {
    if (n == 0) return 1; // basis case
    else return n * recursiveFactorial(n - 1); // recursive case
  }
  ```

© 2010 Goodrich, Tamassia
Linear Recursion

- **Test for base cases**
 - Begin by testing for a set of base cases (there should be at least one).
 - Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.

- **Recur once**
 - Perform a single recursive call
 - This step may have a test that decides which of several possible recursive calls to make, but it should ultimately make just one of these calls
 - Define each possible recursive call so that it makes progress towards a base case.
Example of Linear Recursion

Algorithm LinearSum(A, n):

Input:
A integer array A and an integer $n = 1$, such that A has at least n elements

Output:
The sum of the first n integers in A

if $n = 1$ then
 return $A[0]$
else
 return LinearSum($A, n - 1$) + $A[n - 1]$

Example recursion trace:

- LinearSum($A, 5$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 - LinearSum($A, 5$)
 - LinearSum($A, 4$)
 - LinearSum($A, 3$)
 - LinearSum($A, 2$)
 - LinearSum($A, 1$)
 - LinearSum($A, 0$) \(A[0] = 4 \)
 return $4 + A[1] = 4 + 3 = 7$
 return $A[0] = 4$
Reversing an Array

Algorithm ReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i and ending at j

if $i < j$ then

 Swap $A[i]$ and $A[j]$
 ReverseArray$(A, i+1, j-1)$

return
Defining Arguments for Recursion

- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional parameters that are passed to the method.
- For example, we defined the array reversal method as \texttt{ReverseArray}(A, i, j), not \texttt{ReverseArray}(A).
Computing Powers

- The power function, \(p(x,n) = x^n \), can be defined recursively:

\[
p(x,n) = \begin{cases}
1 & \text{if } n = 0 \\
x \cdot p(x,n-1) & \text{else}
\end{cases}
\]

- This leads to an power function that runs in \(O(n) \) time (for we make \(n \) recursive calls).

- We can do better than this, however.
Recursive Squaring

- We can derive a more efficient linearly recursive algorithm by using repeated squaring:

\[
p(x, n) = \begin{cases}
1 & \text{if } x = 0 \\
x \cdot p(x, (n - 1)/2)^2 & \text{if } x > 0 \text{ is odd} \\
p(x, n/2)^2 & \text{if } x > 0 \text{ is even}
\end{cases}
\]

- For example,

\[
\begin{align*}
2^4 &= 2^{(4/2)^2} = (2^{4/2})^2 = (2^2)^2 = 4^2 = 16 \\
2^5 &= 2^{1+(4/2)^2} = 2(2^{4/2})^2 = 2(2^2)^2 = 2(4^2) = 32 \\
2^6 &= 2^{(6/2)^2} = (2^{6/2})^2 = (2^3)^2 = 8^2 = 64 \\
2^7 &= 2^{1+(6/2)^2} = 2(2^{6/2})^2 = 2(2^3)^2 = 2(8^2) = 128.
\end{align*}
\]
Recursive Squaring Method

Algorithm Power(x, n):

Input: A number x and integer n = 0

Output: The value x^n

if $n = 0$ then
 return 1

if n is odd then
 y = Power(x, (n - 1)/2)
 return $x \cdot y \cdot y$
else
 y = Power(x, n/2)
 return $y \cdot y$
Analysis

Algorithm Power(x, n):

Input: A number x and integer $n = 0$

Output: The value x^n

if $n = 0$ then
 return 1

if n is odd then
 $y = \text{Power}(x, (n - 1)/2)$
 return $x \cdot y \cdot y$

else
 $y = \text{Power}(x, n/2)$
 return $y \cdot y$

Each time we make a recursive call we halve the value of n; hence, we make $\log n$ recursive calls. That is, this method runs in $O(\log n)$ time.

It is important that we use a variable twice here rather than calling the method twice.
Tail Recursion

- Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to non-recursive methods (which saves on some resources).
- Example:

 Algorithm IterativeReverseArray(A, i, j):

 Input: An array A and nonnegative integer indices i and j

 Output: The reversal of the elements in A starting at index i and ending at j

 while $i < j$ do
 Swap $A[i]$ and $A[j]$
 $i = i + 1$
 $j = j - 1$

 return
Binary Recursion

- Binary recursion occurs whenever there are two recursive calls for each non-base case.
- Example: the DrawTicks method for drawing ticks on an English ruler.
A Binary Recursive Method for Drawing Ticks

// draw a tick with no label
public static void drawOneTick(int tickLength) {
 drawOneTick(tickLength, -1);
}

// draw one tick
public static void drawOneTick(int tickLength, int tickLabel) {
 for (int i = 0; i < tickLength; i++)
 System.out.print("-");
 if (tickLabel >= 0) System.out.print(" " + tickLabel);
 System.out.print("\n");
}

public static void drawTicks(int tickLength) {
 // draw ticks of given length
 if (tickLength > 0) {
 drawTicks(tickLength-1); // recursively draw left ticks
 drawOneTick(tickLength); // draw center tick
 drawTicks(tickLength-1); // recursively draw right ticks
 }
}

public static void drawRuler(int nInches, int majorLength) {
 // draw ruler
 drawOneTick(majorLength, 0); // draw tick 0 and its label
 for (int i = 1; i <= nInches; i++) {
 drawTicks(majorLength-1); // draw ticks for this inch
 drawOneTick(majorLength, i); // draw tick i and its label
 }
}

Note the two recursive calls
Another Binary Recursive Method

- Problem: add all the numbers in an integer array A:

 Algorithm `BinarySum(A, i, n):

 Input: An array A and integers i and n

 Output: The sum of the n integers in A starting at index i

 if \(n = 1 \) then

 return \(A[i] \)

 return `BinarySum(A, i, n/2)` + `BinarySum(A, i + n/2, n/2)`

- Example trace:

```
0, 8

0, 4

0, 2

0, 1

1, 1

2, 1

3, 1

4, 2

4, 1

5, 1

6, 1

7, 1
```
Computing Fibonacci Numbers

- Fibonacci numbers are defined recursively:
 \[F_0 = 0 \]
 \[F_1 = 1 \]
 \[F_i = F_{i-1} + F_{i-2} \quad \text{for} \quad i > 1. \]

- Recursive algorithm (first attempt):

 Algorithm \textbf{BinaryFib}(k):

 \textbf{Input}: Nonnegative integer \(k \)

 \textbf{Output}: The \(k \)th Fibonacci number \(F_k \)

 \begin{verbatim}
 if \(k = 1 \) then
 return \(k \)
 else
 return \textbf{BinaryFib}(k - 1) + \textbf{BinaryFib}(k - 2)
 \end{verbatim}
Analysis

- Let n_k be the number of recursive calls by $\text{BinaryFib}(k)$
 - $n_0 = 1$
 - $n_1 = 1$
 - $n_2 = n_1 + n_0 + 1 = 1 + 1 + 1 = 3$
 - $n_3 = n_2 + n_1 + 1 = 3 + 1 + 1 = 5$
 - $n_4 = n_3 + n_2 + 1 = 5 + 3 + 1 = 9$
 - $n_5 = n_4 + n_3 + 1 = 9 + 5 + 1 = 15$
 - $n_6 = n_5 + n_4 + 1 = 15 + 9 + 1 = 25$
 - $n_7 = n_6 + n_5 + 1 = 25 + 15 + 1 = 41$
 - $n_8 = n_7 + n_6 + 1 = 41 + 25 + 1 = 67$.

- Note that n_k at least doubles every other time
- That is, $n_k > 2^{k/2}$. It is exponential!
A Better Fibonacci Algorithm

- Use linear recursion instead

Algorithm LinearFibonacci(k):

Input: A nonnegative integer k

Output: Pair of Fibonacci numbers \((F_k, F_{k-1})\)

if \(k = 1\) then

return \((k, 0)\)

else

\((i, j) = \text{LinearFibonacci}(k - 1)\)

return \((i + j, i)\)

- **LinearFibonacci** makes \(k-1\) recursive calls
Multiple Recursion

- Motivating example:
 - summation puzzles
 - pot + pan = bib
 - dog + cat = pig
 - boy + girl = baby

- Multiple recursion:
 - makes potentially many recursive calls
 - not just one or two
Algorithm for Multiple Recursion

Algorithm PuzzleSolve(k, S, U):

Input: Integer k, sequence S, and set U (universe of elements to test)

Output: Enumeration of all k-length extensions to S using elements in U without repetitions

for all e in U do
 Remove e from U {e is now being used}
 Add e to the end of S
 if k = 1 then
 Test whether S is a configuration that solves the puzzle
 if S solves the puzzle then
 return “Solution found: ” S
 else
 PuzzleSolve(k - 1, S, U)
 Add e back to U {e is now unused}
 Remove e from the end of S
Example

cbb + ba = abc
799 + 98 = 997

a, b, c stand for 7, 8, 9; not necessarily in that order

might be able to stop sooner
Visualizing PuzzleSolve

Initial call

PuzzleSolve (3,(),{a,b,c})

PuzzleSolve (2,a,{b,c})

PuzzleSolve (2,b,{a,c})

PuzzleSolve (2,c,{a,b})

PuzzleSolve (1,ab,{c})

PuzzleSolve (1,ba,{c})

PuzzleSolve (1,ca,{b})

PuzzleSolve (1,ac,{b})

PuzzleSolve (1,bc,{a})

PuzzleSolve (1,cb,{a})

abc

acb

bac

bca

cab

cba

© 2010 Goodrich, Tamassia