Selection
The Selection Problem

Given an integer k and n elements $x_1, x_2, ..., x_n$, taken from a total order, find the k-th smallest element in this set.

Of course, we can sort the set in $O(n \log n)$ time and then index the k-th element.

Can we solve the selection problem faster?
Quick-Select

Quick-select is a randomized selection algorithm based on the prune-and-search paradigm:

- **Prune**: pick a random element x (called pivot) and partition S into
 - L: elements less than x
 - E: elements equal x
 - G: elements greater than x

- **Search**: depending on k, either answer is in E, or we need to recur in either L or G

\[|L| < k \leq |L| + |E| \quad \text{(done)} \]

\[k > |L| + |E| \]

\[k' = k - |L| - |E| \]
Partition

- We partition an input sequence as in the quick-sort algorithm:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $O(1)$ time
- Thus, the partition step of quick-select takes $O(n)$ time

Algorithm $partition(S, p)$

Input sequence S, position p of pivot

Output subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp.

L, E, $G \leftarrow$ empty sequences

$x \leftarrow S.remove(p)$

while $\neg S.isEmpty()$

 $y \leftarrow S.remove(S.first())$

 if $y < x$
 $L.addLast(y)$
 else if $y = x$
 $E.addLast(y)$
 else
 $G.addLast(y)$

return L, E, G
Quick-Select Visualization

An execution of quick-select can be visualized by a recursion path:

- Each node represents a recursive call of quick-select, and stores k and the remaining sequence.

\[
\begin{align*}
&k=5, \ S=(7, 4, 9, 3, 2, 6, 5, 1, 8) \\
&k=2, \ S=(7, 4, 9, 6, 5, 8) \\
&k=2, \ S=(7, 4, 6, 5) \\
&k=1, \ S=(7, 6, 5) \\
&5
\end{align*}
\]
Expected Running Time

Consider a recursive call of quick-select on a sequence of size s

- **Good call**: the sizes of L and G are each less than $3s/4$
- **Bad call**: one of L and G has size greater than $3s/4$

A call is **good** with probability $1/2$

- $1/2$ of the possible pivots cause good calls:

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
```

1. **Bad pivots**
2. **Good pivots**
3. **Bad pivots**
Expected Running Time, Part 2

- **Probabilistic Fact #1**: The expected number of coin tosses required in order to get one head is two.

- **Probabilistic Fact #2**: Expectation is a linear function:
 - \(E(X + Y) = E(X) + E(Y) \)
 - \(E(cX) = cE(X) \)

Let \(T(n) \) denote the expected running time of quick-select.

- **By Fact #2**, \(T(n) \leq T(3n/4) + bn^*(\text{expected # of calls before a good call}) \)
- **By Fact #1**, \(T(n) \leq T(3n/4) + 2bn \)

That is, \(T(n) \) is a geometric series:
- \(T(n) \leq 2bn + 2b(3/4)n + 2b(3/4)^2n + 2b(3/4)^3n + ... \)

So \(T(n) \) is \(O(n) \).

We can solve the selection problem in \(O(n) \) expected time.

© 2004 Goodrich, Tamassia
Deterministic Selection

- We can do selection in $O(n)$ worst-case time.
- Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
 - Divide S into $n/5$ sets of 5 each
 - Find a median in each set
 - Recursively find the median of the “baby” medians.