Skip Lists

© 2010 Goodrich, Tamassia
What is a Skip List

- A skip list for a set S of distinct (key, element) items is a series of lists S_0, S_1, \ldots, S_h such that
 - Each list S_i contains the special keys $+\infty$ and $-\infty$
 - List S_0 contains the keys of S in nondecreasing order
 - Each list is a subsequence of the previous one, i.e.,
 \[S_0 \supseteq S_1 \supseteq \ldots \supseteq S_h \]
 - List S_h contains only the two special keys
- We show how to use a skip list to implement the dictionary ADT
Search

- We search for a key x in a skip list as follows:
 - We start at the first position of the top list
 - At the current position p, we compare x with $y \leftarrow key(next(p))$
 - $x = y$: we return $element(next(p))$
 - $x > y$: we "scan forward"
 - $x < y$: we "drop down"
 - If we try to drop down past the bottom list, we return null

- Example: search for 78

© 2010 Goodrich, Tamassia
Randomized Algorithms

- A randomized algorithm performs coin tosses (i.e., uses random bits) to control its execution.

- It contains statements of the type:

  ```
  b ← random()
  if b = 0
    do A …
  else { b = 1}
    do B …
  ```

- Its running time depends on the outcomes of the coin tosses.

- We analyze the expected running time of a randomized algorithm under the following assumptions:
 - the coins are unbiased, and
 - the coin tosses are independent.

- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give “heads”).

- We use a randomized algorithm to insert items into a skip list.
To insert an entry \((x, o)\) into a skip list, we use a randomized algorithm:

- We repeatedly toss a coin until we get tails, and we denote with \(i\) the number of times the coin came up heads.
- If \(i \geq h\), we add to the skip list new lists \(S_{h+1}, \ldots, S_{i+1}\), each containing only the two special keys.
- We search for \(x\) in the skip list and find the positions \(p_0, p_1, \ldots, p_i\) of the items with largest key less than \(x\) in each list \(S_0, S_1, \ldots, S_i\).
- For \(j \leftarrow 0, \ldots, i\), we insert item \((x, o)\) into list \(S_j\) after position \(p_j\).

Example: insert key 15, with \(i = 2\)
Deletion

- To remove an entry with key x from a skip list, we proceed as follows:
 - We search for x in the skip list and find the positions p_0, p_1, \ldots, p_i of the items with key x, where position p_j is in list S_j
 - We remove positions p_0, p_1, \ldots, p_i from the lists S_0, S_1, \ldots, S_i
 - We remove all but one list containing only the two special keys

- Example: remove key 34
Implementation

- We can implement a skip list with quad-nodes
- A quad-node stores:
 - entry
 - link to the node prev
 - link to the node next
 - link to the node below
 - link to the node above
- Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them
Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm.
- We use the following two basic probabilistic facts:
 - **Fact 1:** The probability of getting i consecutive heads when flipping a coin is $1/2^i$.
 - **Fact 2:** If each of n entries is present in a set with probability p, the expected size of the set is np.

- Consider a skip list with n entries:
 - By Fact 1, we insert an entry in list S_i with probability $1/2^i$.
 - By Fact 2, the expected size of list S_i is $n/2^i$.

- The expected number of nodes used by the skip list is

\[
\sum_{i=0}^{h} \frac{n}{2^i} = n \sum_{i=0}^{h} \frac{1}{2^i} < 2n
\]

- Thus, the expected space usage of a skip list with n items is $O(n)$.
Height

- The running time of the search and insertion algorithms is affected by the height h of the skip list.
- We show that with high probability, a skip list with n items has height $O(\log n)$.
- We use the following additional probabilistic fact:

 Fact 3: If each of n events has probability p, the probability that at least one event occurs is at most np.

- Consider a skip list with n entries:
 - By Fact 1, we insert an entry in list S_i with probability $1/2^i$.
 - By Fact 3, the probability that list S_i has at least one item is at most $n/2^i$.
- By picking $i = 3\log n$, we have that the probability that $S_{3\log n}$ has at least one entry is at most $n/2^{3\log n} = n/n^3 = 1/n^2$.
- Thus a skip list with n entries has height at most $3\log n$ with probability at least $1 - 1/n^2$.
Search and Update Times

- The search time in a skip list is proportional to:
 - the number of drop-down steps, plus
 - the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are $O(\log n)$ with high probability
- To analyze the scan-forward steps, we use yet another probabilistic fact:
 - Fact 4: The expected number of coin tosses required in order to get tails is 2
- When we scan forward in a list, the destination key does not belong to a higher list:
 - A scan-forward step is associated with a former coin toss that gave tails
- By Fact 4, in each list the expected number of scan-forward steps is 2
- Thus, the expected number of scan-forward steps is $O(\log n)$
- We conclude that a search in a skip list takes $O(\log n)$ expected time
- The analysis of insertion and deletion gives similar results

© 2010 Goodrich, Tamassia
Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with \(n \) entries:
 - The expected space used is \(O(n) \).
 - The expected search, insertion, and deletion time is \(O(\log n) \).
- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability.
- Skip lists are fast and simple to implement in practice.

© 2010 Goodrich, Tamassia