Splay Trees

\[v \]

\[3 \]

\[4 \]

\[6 \]

\[8 \]
Splay Trees are Binary Search Trees

BST Rules:
- entries stored only at internal nodes
- keys stored at nodes in the left subtree of \(v \) are less than or equal to the key stored at \(v \)
- keys stored at nodes in the right subtree of \(v \) are greater than or equal to the key stored at \(v \)

An inorder traversal will return the keys in order

Note that two keys of equal value may be well-separated.
Searching in a Splay Tree: Starts the Same as in a BST

Search proceeds down the tree to found item or an external node.

Example: Search for time with key 11.
Example Searching in a BST, continued

- search for key 8, ends at an internal node.
Splay Trees do Rotations after Every Operation (Even Search)

- **new operation:** *splay*
 - splaying moves a node to the root using rotations

- **right rotation**
 - makes the left child \(x \) of a node \(y \) into \(y \)'s parent; \(y \) becomes the right child of \(x \)

- **left rotation**
 - makes the right child \(y \) of a node \(x \) into \(x \)'s parent; \(x \) becomes the left child of \(y \)

(a right rotation about \(y \))

(a left rotation about \(x \))

(structure of tree above \(y \) is not modified)

(structure of tree above \(x \) is not modified)
Splaying:

- “x is a left-left grandchild” means x is a left child of its parent, which is itself a left child of its parent.
- p is x’s parent; g is p’s parent.

Start with node x.

- Is x the root? If yes, stop.
 - If no, is x a child of the root? If yes, is x the left child of the root?
 - If yes, right-rotate about the root.
 - If no, left-rotate about the root.
 - If no, is x a left-left grandchild? If yes, right-rotate about g, then right-rotate about p.
 - If no, is x a right-right grandchild? If yes, left-rotate about g, then left-rotate about p.
 - If no, is x a right-left grandchild? If yes, left-rotate about p, then right-rotate about g.
 - If no, is x a left-right grandchild? If yes, right-rotate about p, then left-rotate about g.

Splay Trees
Visualizing the Splaying Cases

zig-zig

zig-zag

zig
Splaying Example

let $x = (8,N)$
- x is the right child of its parent, which is the left child of the grandparent
- left-rotate around p, then right-rotate around g

1. (before rotating)

2. (after first rotation)

3. (after second rotation)

x is not yet the root, so we splay again
Splaying Example, Continued

1. (before applying rotation)

- now \(x \) is the left child of the root
- right-rotate around root

2. (after rotation)

- \(x \) is the root, so stop
Example Result of Splaying

- The tree might not be more balanced
- e.g. splay (40,X)
 - before, the depth of the shallowest leaf is 3 and the deepest is 7
 - after, the depth of shallowest leaf is 1 and deepest is 8
Splay Tree Definition

- A splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update)
 - Deepest internal node accessed is splayed
 - Splaying costs $O(h)$, where h is height of the tree
 - Which is still $O(n)$ worst-case
 - $O(h)$ rotations, each of which is $O(1)$
Splay Trees & Ordered Dictionaries

which nodes are splayed after each operation?

<table>
<thead>
<tr>
<th>method</th>
<th>splay node</th>
</tr>
</thead>
<tbody>
<tr>
<td>get(k)</td>
<td>if key found, use that node</td>
</tr>
<tr>
<td></td>
<td>if key not found, use parent of ending external node</td>
</tr>
<tr>
<td>put(k,v)</td>
<td>use the new node containing the entry inserted</td>
</tr>
<tr>
<td>remove(k)</td>
<td>use the parent of the internal node that was actually removed from the tree (the parent of the node that the removed item was swapped with)</td>
</tr>
</tbody>
</table>
Amortized Analysis of Splay Trees

- Running time of each operation is proportional to time for splaying.
- Define rank(v) as the logarithm (base 2) of the number of nodes in subtree rooted at v.
- Costs: zig = $1, zig-zig = $2, zig-zag = $2.
- Thus, cost for playing a node at depth d = $d.
- Imagine that we store rank(v) cyber-dollars at each node v of the splay tree (just for the sake of analysis).
Cost per zig

Doing a zig at x costs at most $\text{rank}'(x) - \text{rank}(x)$:
- $\text{cost} = \text{rank}'(x) + \text{rank}'(y) - \text{rank}(y) - \text{rank}(x) \\ < \text{rank}'(x) - \text{rank}(x).$
Cost per zig-zig and zig-zag

Doing a zig-zig or zig-zag at x costs at most
$$3(\text{rank}'(x) - \text{rank}(x)) - 2$$
Cost of Splaying

Cost of splaying a node x at depth d of a tree rooted at r:
- at most $3(\text{rank}(r) - \text{rank}(x)) - d + 2$:
- Proof: Splaying x takes $d/2$ splaying substeps:

$$
cost \leq \sum_{i=1}^{d/2} \text{cost}_i
$$

$$
\leq \sum_{i=1}^{d/2} (3(\text{rank}_i(x) - \text{rank}_{i-1}(x)) - 2) + 2
$$

$$
= 3(\text{rank}(r) - \text{rank}_0(x)) - 2(d/d) + 2
$$

$$
\leq 3(\text{rank}(r) - \text{rank}(x)) - d + 2.
$$
Performance of Splay Trees

- Recall: rank of a node is logarithm of its size.
- Thus, amortized cost of any splay operation is $O(\log n)$
- In fact, the analysis goes through for any reasonable definition of $\text{rank}(x)$
- This implies that splay trees can actually adapt to perform searches on frequently-requested items much faster than $O(\log n)$ in some cases