Union-Find Partition Structures
Partitions with Union-Find Operations

- **makeSet(x):** Create a singleton set containing the element \(x \) and return the position storing \(x \) in this set.
- **union(A,B):** Return the set \(A \cup B \), destroying the old \(A \) and \(B \).
- **find(p):** Return the set containing the element at position \(p \).
List-based Implementation

- Each set is stored in a sequence represented with a linked-list.
- Each node should store an object containing the element and a reference to the set name.
Analysis of List-based Representation

- When doing a union, always move elements from the smaller set to the larger set
 - Each time an element is moved it goes to a set of size at least double its old set
 - Thus, an element can be moved at most $O(\log n)$ times
- Total time needed to do n unions and finds is $O(n \log n)$.
Tree-based Implementation

- Each element is stored in a node, which contains a pointer to a set name.
- A node v whose set pointer points back to v is also a set name.
- Each set is a tree, rooted at a node with a self-referencing set pointer.
- For example: The sets “1”, “2”, and “5”:

```
1
  \  /  \\
  4  7

2
  \  /  \\
  3  6

5
  \  /  \\
  8 10
```

9
11
12
Union-Find Operations

To do a union, simply make the root of one tree point to the root of the other

To do a find, follow set-name pointers from the starting node until reaching a node whose set-name pointer refers back to itself
Union-Find Heuristic 1

- **Union by size:**
 - When performing a union, make the root of smaller tree point to the root of the larger

- **Implies $O(n \log n)$ time for performing n union-find operations:**
 - Each time we follow a pointer, we are going to a subtree of size at least double the size of the previous subtree
 - Thus, we will follow at most $O(\log n)$ pointers for any find.
Path compression:
- After performing a find, compress all the pointers on the path just traversed so that they all point to the root.

Implies $O(n \log^* n)$ time for performing n union-find operations:
- Proof is somewhat involved... (and not in the book)
Proof of $\log^* n$ Amortized Time

- For each node v that is a root
 - define $n(v)$ to be the size of the subtree rooted at v (including v)
 - identified a set with the root of its associated tree.

- We update the size field of v each time a set is unioned into v. Thus, if v is not a root, then $n(v)$ is the largest the subtree rooted at v can be, which occurs just before we union v into some other node whose size is at least as large as v’s.

- For any node v, then, define the rank of v, which we denote as $r(v)$, as $r(v) = \lceil \log n(v) \rceil$:
 - Thus, $n(v) \geq 2^{r(v)}$.
 - Also, since there are at most n nodes in the tree of v, $r(v) = \lceil \log n \rceil$, for each node v.

© 2004 Goodrich, Tamassia
Proof of log* n Amortized Time (2)

For each node v with parent w:
- \(r(v) > r(w) \)

Claim: There are at most \(n/2^s \) nodes of rank \(s \).

Proof:
- Since \(r(v) < r(w) \), for any node v with parent w, ranks are monotonically increasing as we follow parent pointers up any tree.
- Thus, if \(r(v) = r(w) \) for two nodes v and w, then the nodes counted in \(n(v) \) must be separate and distinct from the nodes counted in \(n(w) \).
- If a node v is of rank \(s \), then \(n(v) \geq 2^s \).
- Therefore, since there are at most \(n \) nodes total, there can be at most \(n/2^s \) that are of rank \(s \).
Proof of $\log^* n$ Amortized Time (3)

Definition: Tower of two's function:

- $t(i) = 2^{t(i-1)}$

Nodes v and u are in the same rank group g if

- $g = \log^*(r(v)) = \log^*(r(u))$

Since the largest rank is $\log n$, the largest rank group is

- $\log^*(\log n) = (\log^* n) - 1$
Proof of log* n Amortized Time (4)

Charge 1 cyber-dollar per pointer hop during a find:

- If \(w \) is the root or if \(w \) is in a different rank group than \(v \), then charge the find operation one cyber-dollar.
- Otherwise (\(w \) is not a root and \(v \) and \(w \) are in the same rank group), charge the node \(v \) one cyber-dollar.

Since there are most \((\log^* n) - 1\) rank groups, this rule guarantees that any find operation is charged at most \(\log^* n\) cyber-dollars.
Proof of log* n Amortized Time (5)

- After we charge a node \(v \) then \(v \) will get a new parent, which is a node higher up in \(v \)'s tree.
- The rank of \(v \)'s new parent will be greater than the rank of \(v \)'s old parent \(w \).
- Thus, any node \(v \) can be charged at most the number of different ranks that are in \(v \)'s rank group.
- If \(v \) is in rank group \(g > 0 \), then \(v \) can be charged at most \(t(g) - t(g-1) \) times before \(v \) has a parent in a higher rank group (and from that point on, \(v \) will never be charged again). In other words, the total number, \(C \), of cyber-dollars that can ever be charged to nodes can be bounded by

\[
C \leq \sum_{g=1}^{\log^* n - 1} n(g) \cdot (t(g) - t(g - 1))
\]
Proof of $\log^* n$ Amortized Time (end)

Bounding $n(g)$:

\[
n(g) \leq \sum_{s=t(g-1)+1}^{t(g)} \frac{n}{2^s}
\]

\[
= \frac{n}{2^{t(g-1)+1}} \sum_{s=0}^{t(g)-t(g-1)-1} \frac{1}{2^s}
\]

\[
< \frac{n}{2^{t(g-1)+1}} \cdot 2
\]

\[
= \frac{n}{2^{t(g-1)}}
\]

\[
= \frac{n}{t(g)}
\]

Returning to C:

\[
C < \sum_{g=1}^{\log^* n - 1} \frac{n}{t(g)} \cdot (t(g) - t(g-1))
\]

\[
\leq \sum_{g=1}^{\log^* n - 1} \frac{n}{t(g)} \cdot t(g)
\]

\[
= \sum_{g=1}^{\log^* n - 1} n
\]

\[
\leq n \log^* n
\]