Iterative Methods for Image Deblurring

Math 561

Fall, 2006
Outline

Introduction

The Computational Problem

Regularization Review

Iterative Methods
Class of Difficult Problems

\[b(s) = \int a(s, t)x(t)dt + e(s) \]

\[b = Ax + e \]

where

- **A** - known (implicitly) large, ill-conditioned matrix
- **b** - known, given data
- **e** - noise, statistical properties may be known

Goal: Compute an approximation of \(x \).
Applications: Image Deblurring

\[b = Ax + e \]

- Given blurred image, \(b \), information about the blurring, \(A \), and noise, \(e \).

- Goal: Compute approximation of true image, \(x \).
Applications: Image Deblurring

\[b = Ax + e \]

- Given blurred image, \(b \), information about the blurring, \(A \), and noise, \(e \).
- Goal: Compute approximation of true image, \(x \).
Applications: Super Resolution for Iris Recognition

Basic idea: Given set of low resolution images,
Applications: Super Resolution for Iris Recognition

Basic idea: Given set of low resolution images,
Applications: Super Resolution for Iris Recognition

Basic idea: Given set of low resolution images, combine to get a high resolution image
Applications: Super Resolution for Iris Recognition

Basic idea: Given set of low resolution images, combine to get a high resolution image without distortions.
Applications: Super Resolution for Medical Imaging

Similar to iris recognition, but

- Registration (alignment) of images more difficult.
- Solving $\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{e}$ is a subproblem of a nonlinear optimization method.
The Computational Problem

From the matrix-vector equation

\[b = Ax + e \]

- Given \(b \) and \(A \), compute an approximation of \(x \)

- Regarding the noise, \(e \):
 - It is usually not known.
 - However, some statistical information may be known.
 - It is usually small, but it cannot be ignored!

That is, solving the linear algebra problem:

\[Ax = b \quad \Rightarrow \quad x = A^{-1}b \]

usually does not work.
The Computational Problem

- Given A and $b = Ax + e$

- Goal: Compute approximation of true image, x

- Naïve inverse solution

\[
\hat{x} = A^{-1}b \\
= A^{-1}(Ax + e) \\
= x + A^{-1}e \\
= x + \text{error}
\]

is corrupted with noise!
The Computational Problem

- Given A and $b = Ax + e$

- Goal: Compute approximation of true image, x

- Naïve inverse solution

\[
\hat{x} = A^{-1}b \\
= A^{-1} (Ax + e) \\
= x + A^{-1}e \\
= x + \text{error}
\]

is corrupted with noise!
The Computational Problem

- Given A and $b = Ax + e$

- Goal: Compute approximation of true image, x

- Naïve inverse solution

 $$\hat{x} = A^{-1}b$$
 $$= A^{-1} (Ax + e)$$
 $$= x + A^{-1}e$$
 $$= x + \text{error}$$

 is corrupted with noise!
Regularization

Basic Idea: Modify the inversion process to compute:

\[x_{\text{reg}} = A_{\text{reg}}^{-1} b \]

so that

\[\hat{x} = A_{\text{reg}}^{-1} b \]

\[= A_{\text{reg}}^{-1} (Ax + e) \]

\[= A_{\text{reg}}^{-1} Ax + A_{\text{reg}}^{-1} e \]

where

\[A_{\text{reg}}^{-1} Ax \approx x \quad \text{and} \quad A_{\text{reg}}^{-1} e \text{ is not too large} \]
Regularization

Examples of well known regularization methods:

- Tikhonov
- Truncated Singular Value Decomposition (TSVD)
- Total Variation

Difficulty: Computing $A_{\text{reg}}^{-1}b$ is often very computationally expensive when A is large.

(In our problems, A can easily be $10^6 \times 10^6$)
For large matrices use iterative methods

\[x_0 = \text{initial estimate of } x \]

\text{for } k = 1, 2, 3, \ldots

- \quad x_k = \text{computations involving } x_{k-1}, A, b, \text{ a preconditioner matrix, } M, \text{ and other intermediate quantities}
- \quad \text{determine if stopping criteria are satisfied}

\text{end}

\text{▶ } x_k \text{ converges to } A^{-1}b

\text{▶ Expensive computations at each iteration:}
 \text{▶ } \text{Multiplying } A \text{ times a vector.}
 \text{▶ } \text{Applying the preconditioner.}

These computations are usually cheap for sparse and structured matrices.
Properties of iterative methods for our problem:

- Early iterations:
 - x_k begins to reconstruct x
 - error term is small

- But, eventually iteration converges to $\hat{x} = A^{-1}b = x + \text{error}$

- Thus, as k gets large, x_k is dominated by error

- Goal is to stop iteration when:
 - x_k is a good approximation of x
 - error is not too large
Properties of iterative methods for our problem:

- Early iterations:
 - x_k begins to reconstruct x
 - error term is small

- But, eventually iteration converges to $\hat{x} = A^{-1}b = x + \text{error}$

- Thus, as k gets large, x_k is dominated by error

- Goal is to stop iteration when:
 - x_k is a good approximation of x
 - error is not too large
Properties of iterative methods for our problem:

- Early iterations:
 - x_k begins to reconstruct x
 - error term is small

- But, eventually iteration converges to $\hat{x} = A^{-1}b = x + \text{error}$

- Thus, as k gets large, x_k is dominated by error

- Goal is to stop iteration when:
 - x_k is a good approximation of x
 - error is not too large
Properties of iterative methods for our problem:

- Early iterations:
 - x_k begins to reconstruct x
 - error term is small

- But, eventually iteration converges to $\hat{x} = A^{-1}b = x + \text{error}$

- Thus, as k gets large, x_k is dominated by error

- Goal is to stop iteration when:
 - x_k is a good approximation of x
 - error is not too large
Example of iterative method LSQR
Difficulty with iterative methods

- Difficult to find an appropriate stopping iteration, k_{stop}.
 - The error plot in the previous example gives $k_{\text{stop}} = k_{\text{opt}}$.
 - However, can only plot errors if true solution is known!

- Other methods can be used to estimate k_{stop}.
 - But they often choose $k_{\text{stop}} > k_{\text{opt}}$.
 Thus, computed solution contains too much error!
Hybrid Method

Basic Idea:

- Use iterative method for $b = Ax + e$

- At each iteration:
 - Project very large problem to a very small problem.
 - Use sophisticated regularization methods to solve very small problem.
 - Project solution of very small problem back to very large problem.

- Advantage: error term does not grow!

- Thus, it is okay to have $k_{\text{stop}} > k_{\text{opt}}$.
Example of hybrid method
Hybrid Methods

In any case, the hybrid methods still have the form:

\[x_0 = \text{initial estimate of } x \]
\[\text{for } k = 1, 2, 3, \ldots \]
\[\bullet \quad x_k = \text{computations involving } x_{k-1}, A, b, \]
\[\quad \text{a preconditioner matrix, } M, \text{ and } \]
\[\quad \text{other intermediate quantities} \]
\[\bullet \quad \text{determine if stopping criteria are satisfied} \]

end

\[\rightarrow x_k \text{ converges to } A^{-1}_{\text{reg}} b \]

\[\rightarrow \text{Expensive computations at each iteration:} \]
\[\quad \rightarrow \text{Multiplying } A \text{ times a vector.} \]
\[\quad \rightarrow \text{Applying the preconditioner.} \]