On H-Linked Graphs - Questions About Strong Connectivity

Ron Gould
Emory University

April 3, 2010
One of the most natural and important properties in the study of graphs is **connectivity**.

Definition

A graph is connected if any two vertices are joined by a path.
One of the most natural and important properties in the study of graphs is **connectivity**.

Definition

A graph is connected if any two vertices are joined by a path.

Connectivity itself has many ‘levels’. We say a graph G of order at least k is **k-connected** if the removal of any set of $k - 1$ vertices leaves a connected graph.
Equivalent Definition

Definition

G is *k-connected* if for every two sets of k vertices, say $X = x_1, \ldots, x_k$, and $Y = y_1, \ldots, y_k$, there are disjoint paths P_1, \ldots, P_k such that P_i joins a vertex of X to a vertex of Y.

```
  x_1 .
  x_2 .
  x_3 .
   .
   .
  x_{k-1} .
  x_k .
     .
     .
     .

  y_1 .
  y_2 .
  y_3 .
   .
   .
  y_{k-1} .
  y_k .
```
Equivalent Definition

Definition

If for every two sets of \(k \) vertices, say \(X = x_1, \ldots, x_k \), and \(Y = y_1, \ldots, y_k \), there are disjoint paths \(P_1, \ldots, P_k \) such that \(P_i \) joins a vertex of \(X \) to a vertex of \(Y \), then \(G \) is said to be \(k \)-connected.
Definition

G is k-linked

if for every sequence of $2k$ vertices, $x_1, \ldots, x_k, y_1, \ldots, y_k$, there are internally disjoint paths P_1, \ldots, P_k such that P_i joins x_i and y_i.

\[x_1 \quad \bullet \quad \bullet \quad y_1\\
x_2 \quad \bullet \quad \bullet \quad y_2\\
x_3 \quad \bullet \quad \bullet \quad y_3\\
\vdots \quad \vdots \quad \vdots \quad \vdots\\
x_{k-1} \quad \bullet \quad \bullet \quad y_{k-1}\\
x_k \quad \bullet \quad \bullet \quad y_k\]
Definition

G is **k-linked**

if for every sequence of $2k$ vertices, $x_1, \ldots, x_k, y_1, \ldots, y_k$, there are internally disjoint paths P_1, \ldots, P_k such that P_i joins x_i and y_i.

![Diagram showing internally disjoint paths between pairs of vertices](image-url)
There are a lot of possibilities between k-connected and k-linked. Questions it seems no one has ever asked.

What if we partition $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$ such that $|X_i| = |Y_i|$, $i = 1, 2$.
Question

There are a lot of possibilities between k-connected and k-linked. Questions it seems no one has ever asked.

What if we partition $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$ such that $|X_i| = |Y_i|$, $i = 1, 2$.

Then how connected must G be so that there will exist disjoint paths $P_1, \ldots, P_{|X_1|}$ joining vertices of X_1 to vertices of Y_1 and disjoint paths $Q_1, \ldots, Q_{|X_2|}$ joining vertices of X_2 to Y_2?
Question

Ron Gould Emory University

On H-Linked Graphs - Questions About Strong Connectivity
Question

Ron Gould Emory University
On H-Linked Graphs - Questions About Strong Connectivity
Question

Ron Gould Emory University On H-Linked Graphs - Questions About Strong Connectivity
Remark

Clearly, this is a concept that lies between connectivity and linkage. Also, many variations on this could be asked.

Can we distinguish these ideas with extra connectivity?

For now, let’s concentrate on k-linked graphs.
Alternate View

We can also view the k-linked problem as:

We are trying to find a subdivision of the graph kK_2 in a graph G, where we prescribe which vertices will play the role of the vertices in the kK_2.
Alternate View

2t vertices selected

On H-Linked Graphs - Questions About Strong Connectivity
Alternate View
If we can find a subdivision of a graph H in a graph G on any set of $|H|$ prescribed vertices of G, then we say that G is H-linked.

The vertices of G playing the roles of the vertices of H are called the branch vertices of G.

Thus, G is k-linked if and only if G is $H = kK_2$-linked.
Jung and independently Larman and Mani - 1970

Theorem

If G is a $2k$-connected graph which contains a subdivision of K_{3k}, then G is k–linked.
Proof technique

$S(K_{3k})$

$x_1, x_2, ..., x_k, y_1, y_2, ..., y_k$
Proof technique

$S(K_{3k})$

Ron Gould Emory University

On H-Linked Graphs - Questions About Strong Connectivity
Proof technique

$S(K_{3k})$
Natural Question Arose

Question

Could enough connectivity alone imply a graph was k-linked?

Remark

Examples seemed to indicate something like $3k$-connected could be enough!
Example - not k-linked
Example - not k-linked

$K_{3k-1} - k K_2$

K vertices missing

k edges

Ron Gould
Emory University

On H-Linked Graphs - Questions About Strong Connectivity
Question

What is the smallest function $f(k)$ so that every $f(k)$-connected graph is k-linked?

Question

Could it be that $f(k)$ is linear?
Bollobás and Thomason - 1996

Theorem

Let H be a graph of order p with $\delta(H) > p/2 + 4k - 2$. Then every $2k$-connected graph containing H as a minor is k-linked.

Theorem

Every $22k$-connected graph is k-linked.
The following gives a connectivity bound that ensures a graph contains a subdivision of a given graph (in fact, many subdivisions).

Theorem

Let H be a graph with k vertices and m edges. Then every $(22m + k)$-connected graph is H-linked.
Theorem

Every $2k$-connected graph with average degree at least $10k$ is k-linked.

Corollary

$f(k) \leq 10k.$
For $k = 1$, asking G to be connected. Hence, $f(1) = 1$.
For $k = 2$, Jung showed $f(2) = 6$. In fact, he showed more.

Theorem

(a) Every maximally planar 4-connected graph is 2-linked.
(b) Every non-planar 4-connected graph is 2-linked.

Clearly, this implies that any 4-connected graph of order n with at least $3n - 6$ edges is 2-linked.
Seymour and Thomassen - 1980 found the maximal non-2-linked graphs called \((S, T)\)-webs.
Seymour and Thomassen - 1980 found the maximal non-2-linked graphs called (S, T)-webs.
Seymour and Thomassen - 1980 found the maximal non-2-linked graphs called \((S, T)\)-webs.
Seymour and Thomassen - 1980 found the maximal non-2-linked graphs called \((S, T)\)-webs.
Theorem

Let $S = \{s_1, s_2\}$ and $T = \{t_1, t_2\}$ be disjoint sets of vertices. A graph is maximal with respect to not having an (S, T)-linkage if and only if it is an (S, T)-web.
Chen, RG, Kawarabayshi, Pfender and Wei - 2005

Theorem

Every 6-connected graph having \(K_9^- \) as a minor is 3-linked.

Later, Thomas and Wollan - 2005 produced the optimal edge bound for ensuring a 6-connected graph is 3-linked.

Theorem

Every 6-connected graph of order \(n \) and at least \(5n - 14 \) edges is 3-linked.
In view of the results on 2 and 3 linked graphs:

Problem

Does there exist a function $m(k)$ such that every $2k$-connected graph with at least $m(k)$ edges is k-linked?
Small \textit{k}

\textbf{Conjecture}

\textit{Every 8-connected graph is 3-linked.}
Definition

Let

\[\sigma_2(G) = \min \{ \deg x + \deg y \mid xy \notin E(G) \}. \]
$R(n, k)$ denotes min pos integer r such that every graph of order n with $\sigma_2(G) \geq r$ is k-linked.

Theorem

If $k \geq 2$, then

$$R(n, k) = \begin{cases}
2n - 3, & \text{if } n \leq 3k - 1, \\
\left\lfloor \frac{2(n+5k)}{3} \right\rfloor - 3, & \text{if } 3k \leq n \leq 4k - 2, \\
n + 2k - 3, & \text{if } n \geq 4k - 1.
\end{cases}$$
$D(n, k) = \min \text{ pos integer } d \text{ such that every graph of order } n \text{ and minimum degree } \delta(G) \geq d \text{ is } k\text{-linked.}$

Theorem

If $k \geq 2$, then

\[
D(n, k) = \begin{cases}
 n - 1, & \text{if } n \leq 3k - 1, \\
\left\lfloor \frac{n+5k}{3} \right\rfloor - 1, & \text{if } 3k \leq n \leq 4k - 2, \\
\left\lceil \frac{n-3}{2} \right\rceil + k, & \text{if } n \geq 4k - 1.
\end{cases}
\]
Theorem

For every graph H, there is an integer $g(H)$ such that every graph G with $\delta(G) \geq \max \{\Delta(H), 3\}$ and with girth at least $g(H)$ contains a subdivision of H.

Corollary

(a) Every $2k$-connected graph of sufficiently large girth is k-linked.
(b) Every $2\binom{n}{2}$-connected graph of sufficiently large girth contains a subdivision of K_n with prescribed branch vertices.
Theorem

(a) For $k = 4$ or 5, every $2k$-connected graph of girth 19 is k-linked.

(b) For $k \geq 6$, every $2k$-connected graph of girth at least 11 is k-linked.
Many sufficient conditions for a graph to be H-linked take a degree-based approach.

Kostochka and Yu - 2005:

Theorem

Let H be a graph of order k with $\delta(H) \geq 2$ and no loops. Every simple graph G of order $n \geq 5n + 6$ with $\delta(G) \geq \left\lceil \frac{(n+k-1)}{2} \right\rceil$ is H-linked. This minimum degree condition is sharp.
Define $b(H)$:

- If H is connected, $b(H)$ is defined to be the maximum size of an edge cut in H, unless H contains no even cycles, then $b(H)$ is defined to be $|V(H)| - 1$.
- If H has components H_1, \ldots, H_t, then $b(H) = u(H) + \sum_{i=1}^{t} b(H_i)$, where $u(H)$ denotes the number of components of H that contain no even cycles.
H-Linked Graphs

- k vertices in X
- t vertices in $V(G) - X$
- $V(G) - X$
- X
- Max edge cut

Ron Gould
Emory University

On H-Linked Graphs - Questions About Strong Connectivity
On H-Linked Graphs - Questions About Strong Connectivity

Ron Gould Emory University
Theorem

Let H be a connected multigraph, possibly containing loops. If G is a simple graph of sufficiently large order n with

$$\delta(G) \geq \left\lceil \frac{n + b(H) - 2}{2} \right\rceil,$$

then G is H-linked. Furthermore, every injection $f : V(H) \rightarrow V(G)$ can be extended to an H-subdivision in which every edge-path has at most two intermediate vertices.
Kostochka and Yu - 2006

Theorem

Let H be a loopless connected multigraph of order k with $\delta(H) \geq 2$. If G is a simple graph of order $n \geq 7.5k$ with

$$\delta(G) \geq \left\lceil \frac{n + b(H) - 2}{2} \right\rceil,$$

then G is H-linked.
Theorem

Let H be a multigraph of size ℓ, possibly containing loops and let $k_1 = k_1(H) = \ell + u(H)$. If G is a simple graph of order $n \geq 9.5(k_1 + 1)$ with

$$\delta(G) \geq \left\lceil \frac{n + b(H) - 2}{2} \right\rceil$$

then G is H-linked. Furthermore, every injection $f : V(H) \to V(G)$ can be extended to an H-subdivision with at most $5k_1 + 2$ vertices.
Applications

(RG, Whalen, 2004)

Theorem

If H is a multigraph and G is a simple $(\max\{\alpha(H), \beta(H)\} + 1)$-connected graph of order $n > 11|E(H)| + 7(|H| - h_1(H))$ such that

$$\sigma_2(G) \geq n + |E(H)| - |H| + h_1(H) + h_0(H),$$

then G is H-extendable.

$\alpha(H) =$ independence number
Applications

(RG, Whalen, 2004)

Theorem

If H is a multigraph and G is a simple $(\max\{\alpha(H), \beta(H)\} + 1)$-connected graph of order $n > 11|E(H)| + 7(|H| - h_1(H))$ such that

$$\sigma_2(G) \geq n + |E(H)| - |H| + h_1(H) + h_0(H),$$

then G is H-extendable.

$\beta(H)$ = edge independence number
Applications

(RG, Whalen, 2004)

Theorem

If H is a multigraph and G is a simple $(\max\{\alpha(H), \beta(H)\} + 1)$-connected graph of order $n > 11|E(H)| + 7(|H| - h_1(H))$ such that

$$\sigma_2(G) \geq n + |E(H)| - |H| + h_1(H) + h_0(H),$$

then G is H-extendable.

$h_0 =$ number of vertices of deg 0
Applications

(Theorem, RG, Whalen, 2004)

If H is a multigraph and G is a simple $(\max\{\alpha(H), \beta(H)\} + 1)$-connected graph of order $n > 11|E(H)| + 7(|H| - h_1(H))$ such that

$$\sigma_2(G) \geq n + |E(H)| - |H| + h_1(H) + h_0(H),$$

then G is H-extendable.

$h_1 =$ number of vertices of deg 1
Applications

(RG, Whalen, 2004)

Theorem

If H is a multigraph and G is a simple $(\max\{\alpha(H), \beta(H)\} + 1)$-connected graph of order $n > 11|E(H)| + 7(|H| - h_1(H))$ such that

$$\sigma_2(G) \geq n + |E(H)| - |H| + h_1(H) + h_0(H),$$

then G is H-extendable.

H-extendable = spanning subdivision of H in G
Definition

By an independent edge set we mean a set E of edges whose end vertices have degree one in the graph induced by E.

Note: Since we consider a loop as adding two to the degree of a vertex, loops are not considered independent edges. Similarly, since the graph induced by a single vertex with a loop has an edge, we do not consider such vertices as independent.
Corollary

(Ore, 1960) Let G be a graph on $n \geq 3 (> 18)$ vertices with $\sigma_2(G) \geq n$, then G is hamiltonian.

Proof. Let H be a single vertex with a loop. Then $|E(H)| = |V(H)| = 1$ and $h_1 = h_0 = 0 = \alpha = \beta$. Clearly, the degree condition implies the existence of a cycle.
Corollary

(Ore) Let G be a connected graph of order $n \geq 3(\geq 12)$ and $\sigma_2(G) \geq n + 1$, then G is hamiltonian connected.

Proof: Let $H = K_2$. Then $|E(H)| = 1$, $|H| = 2$ and $h_1 = 2$ and $h_0 = 0$. Also $\alpha = 1 = \beta$.

Thus, using the theorem we get $\sigma_2 \geq n + 1 - 2 + 2 = n + 1$ and that $n > 11(1) + 7(2 - 2) = 11$. As G is connected, there exists a path between any two vertices, and by the theorem, it extends to a hamiltonian path.
Definition

A graph G is *k-ordered* if given any sequence of k vertices, say x_1, x_2, \ldots, x_k, there is a cycle in G where these vertices occur in this order (in one direction or the other).

Definition

G is *k-ordered hamiltonian* if it is k-ordered and if the cycle containing these k vertices spans $V(G)$.
Corollary

(Kierstead, Sárközy and Selkow, 1999)

If G is a graph of order $n \geq 11k - 3$ ($n > 18k$) with
$\delta(G) \geq \lceil n/2 \rceil + \lfloor k/2 \rfloor - 1$, then G is k-ordered hamiltonian.

Proof. Use $H = C_k$, then $b(H) = k$ (or $k - 1$) and in any case the bound on δ for the H-linked result provides the above bound exactly. Thus, G is k-ordered. Further, this bound exceeds that for the extension theorem $(n/2)$, hence G is k-ordered hamiltonian.
Corollary

(Brandt, et. al, 1997) Let G be a graph of order n with $\sigma_2 \geq n$. Then for all $1 \leq k \leq n/4(\leq n/18)$, we have that G contains a 2-factor with exactly k cycles.

Proof: Let H be k vertices, each with a loop. Then $|E(H)| = |V(H)| = k$ and $h_1 = \alpha = \beta = 0$. Justesen’s Theorem implies k vertex disjoint cycles exist under this degree condition. The Extension Theorem then implies they extend to form a 2-factor.
Another Generalization - Immersions

- Suppose we weaken the question.
Another Generalization - Immersions

- Suppose we weaken the question.

- Suppose we now wish to allow the paths in G to be **edge disjoint** but **not necessarily vertex disjoint**.
Another Generalization - Immersions

- Suppose we weaken the question.
- Suppose we now wish to allow the paths in G to be edge disjoint but not necessarily vertex disjoint.
- Call such a graph an H-immersion in G.
Immersions

\[G \]

\[f(x) \]

\[H \]

\[x_1 \]
\[x_2 \]
\[x_3 \]
\[x_4 \]
\[x_5 \]

\[f(x_1) \]
\[f(x_2) \]
\[f(x_3) \]
\[f(x_4) \]
\[f(x_5) \]

Ron Gould Emory University
On H-Linked Graphs - Questions About Strong Connectivity
Immersions

On H-Linked Graphs - Questions About Strong Connectivity
Immersions
Definition For an immersion I of H in a graph G, let $S = f(V(H))$. For a vertex $v \in G - S$, define the **vertex repetition number**, $r(v, I)$, to be one less than the number of paths of I containing v (and zero if v is not used in forming I).

Definition Define the **vertex repetition number** $r(I)$ to be the sum of the vertex repetition numbers of vertices of $G - S$.
Immersion Result

Theorem

Let H be a multigraph of order k and G a simple graph of sufficiently large order n. If λ is an integer such that $0 \leq \lambda \leq b(H) - k + 1$, and

$$\delta(G) \geq \frac{n + b(H) - \lambda - 2}{2},$$

then any injective map $f : V(H) \rightarrow V(G)$ can be extended to an H-immersion, I, with $r(I) \leq \lambda$.
A graph G is weakly k-linked if given any two sets of k distinct vertices, $S = \{s_1, s_2, \ldots, s_k\}$ and $T = \{t_1, t_2, \ldots, t_k\}$ we can find k pairwise edge-disjoint paths P_1, P_2, \ldots, P_k such that P_i joins s_i to t_i, $i = 1, 2, \ldots, k$.

![Diagram illustrating a weakly k-linked graph]
Definition

A graph G is *weakly k-linked* if given any two sets of k distinct vertices, $S = \{s_1, s_2, \ldots, s_k\}$ and $T = \{t_1, t_2, \ldots, t_k\}$, we can find k pairwise edge-disjoint paths P_1, P_2, \ldots, P_k such that P_i joins s_i to t_i, $i = 1, 2, \ldots, k$.
Conjecture - Thomassen 1980

Conjecture

There exists a function $g(k)$ such that every $g(k)$-edge connected multigraph is weakly k-linked.

He also showed that k-edge connected was not enough for a multigraph to be weakly k-linked.
Conjecture

If k is odd, then $g(k) = k$ and if k is even, then $g(k) = k + 1$.

Thomassen - 1980

Theorem

\[
g(k) \leq k + 1 \quad \text{if } k \text{ is odd, and} \\
g(k) \leq k + 2 \quad \text{if } k \text{ is even.}
\]