Theorem 1 (Lagrange, 1770). Any positive integer is the sum of four integral squares.

Proof. Because of the four squares identity, it suffices to prove the theorem for primes \(p \). Since \(2 = 1^2 + 1^2 + 0^2 + 0^2 \), we may suppose \(p \) is an odd prime.

Consider \(x^2 \) for all integers \(0 \leq x \leq (p-1)/2 \). All these are incongruent mod \(p \). Consider also \(-1 - y^2\) for all integers \(0 \leq y \leq (p-1)/2\); these are also incongruent mod \(p \). Therefore, by the pigeonhole principle, there are integers \(x \) and \(y \) such that \(x^2 + y^2 + 1 \equiv 0 \pmod{p} \) and \(0 \leq x, y \leq (p-1)/2 \).

Note that \(x^2 + y^2 + 1 < 1 + 2(p/2)^2 < p^2 \), and hence \(x^2 + y^2 + 1 = mp \) for some \(1 \leq m < p \). Let \(\ell \) be the smallest positive integer such that \(\ell p \) may be written as a sum of four integral squares, say, \(\ell p = x^2 + y^2 + z^2 + w^2 \). Then \(\ell \leq m < p \).

We claim that \(\ell \) is odd. Indeed, if \(\ell \) were even, then an even number of \(x, y, z, \) and \(w \) would be odd, and hence without loss of generality we may suppose that \(x - y, x + y, z - w, \) and \(z + w \) are all even. Moreover, we have

\[
\frac{1}{2} \ell p = \left(\frac{1}{2}(x - y) \right)^2 + \left(\frac{1}{2}(x + y) \right)^2 + \left(\frac{1}{2}(z - w) \right)^2 + \left(\frac{1}{2}(z + w) \right)^2,
\]

which contradicts the minimality of \(\ell \). Therefore \(\ell \) is indeed odd.

If \(\ell = 1 \), then we are done. So suppose that \(\ell > 1 \). Take \(x', y', z', \) and \(w' \) congruent to, respectively, \(x, y, z, \) and \(w \) modulo \(p \). Moreover, choose \(x', y', z', \) and \(w' \) with smallest possible absolute value. Clearly, \(n = (x')^2 + (y')^2 + (z')^2 + (w')^2 > 0 \), for otherwise \(x' = y' = z' = w' = 0 \), and \(x, y, z, \) and \(w \) would all be divisible by \(\ell \), and hence \(\ell^2 \) would divide \(x^2 + y^2 + z^2 + w^2 = \ell p \), which tells us that \(\ell \) divides \(p \). Since \(1 < \ell < p \), this is a contradiction, and hence indeed \(n > 0 \).

Since \(\ell \) is odd, we have \(|x'|, |y'|, |z'|, \) and \(|w'| < \ell/2 \), whence \(n = (x')^2 + (y')^2 + (z')^2 + (w')^2 < 4(\ell/2)^2 = \ell^2 \). Since \(n \equiv \ell p \equiv 0 \pmod{\ell} \), we have \(n = \ell k \) for some \(1 \leq k < \ell \).

We now use the four squares identity to obtain that \((\ell k)(\ell p) \) is a sum of four squares. More precisely, let

\[
\begin{pmatrix} t_1 & t_2 & t_3 & t_4 \end{pmatrix} = \begin{pmatrix} x' & y' & z' & w' \end{pmatrix} \begin{pmatrix} x & -y & -z & -w \\ y & x & w & -z \\ z & -w & x & y \\ w & z & -y & x \end{pmatrix}.
\]

Date: February 17, 2003.

Math and CS, Emory University.
(The matrix above is $H(x, -y, -z, -w)$, in the notation used in the proof of the Bruck–Ryser theorem.) Then $kp\ell^2 = ((x')^2 + (y')^2 + (z')^2 + (w')^2)(x^2 + y^2 + z^2 + w^2) = t_1^2 + t_2^2 + t_3^2 + t_4^2$. However, all the t_i are divisible by ℓ, and hence kp is a sum of four integral squares, which contradicts the choice of ℓ. This contradiction shows that $\ell = 1$, and the theorem is proved.